This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A058209 #28 Oct 18 2022 17:59:39 %S A058209 -5,-4,-5,-2,-6,0,-5,-1,-4,5,-9,7,0,2,-2,13,-5,16,-3,9,8,22,-11,21,12, %T A058209 17,4,32,-7,36,7,25,22,31,-10,46,27,34,2,53,2,57,20,29,37,64,-9,61,28, %U A058209 52,29,76,13,63,18,61,54,87,-18,91,60,55,35,81,24,103,48,81,36,111,-9,115 %N A058209 a(n) = floor( exp(gamma) n log log n ) - sigma(n), where gamma is Euler's constant (A001620) and sigma(n) is sum of divisors of n (A000203). %C A058209 Theorem (G. Robin): exp(gamma) n log log n - sigma(n) is positive for all n >= 5041 if and only if the Riemann Hypothesis is true. %C A058209 Note that a(n) <= exp(gamma) n log log n - sigma(n) < a(n) + 1. %D A058209 D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section III.2.2.b. %D A058209 G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothese de Riemann, J. Math. Pures Appl. 63 (1984), 187-213. %H A058209 T. D. Noe, <a href="/A058209/b058209.txt">Table of n, a(n) for n = 2..10000</a> %H A058209 G. Caveney, J.-L. Nicolas, and J. Sondow, <a href="http://www.integers-ejcnt.org/l33/l33.pdf">Robin's theorem, primes, and a new elementary reformulation of the Riemann Hypothesis</a>, Integers 11 (2011), #A33. %H A058209 G. Caveney, J.-L. Nicolas and J. Sondow, <a href="http://arxiv.org/abs/1112.6010">On SA, CA, and GA numbers</a>, Ramanujan J., 29 (2012), 359-384. %p A058209 with(numtheory); Digits := 100; g := evalf(gamma); [seq( floor(exp(g)*n*log(log(n)))-sigma[1](n), n=2..80)]; %t A058209 a[n_] := Floor[Exp[EulerGamma] n*Log[Log[n]]] - DivisorSigma[1, n]; Array[a,100,2] (* _Jean-François Alcover_, May 04 2011 *) %o A058209 (PARI) a(n)=floor( exp(Euler)*n*log(log(n)) - sigma(n)) \\ _Charles R Greathouse IV_, Feb 08 2017 %Y A058209 Cf. A000203, A001620, A057641, A057642, A058210. %K A058209 sign,nice,easy %O A058209 2,1 %A A058209 _N. J. A. Sloane_, Nov 30 2000 %E A058209 Statement of Robin's theorem corrected by _Jonathan Sondow_, May 30 2011