A058213 Triangular arrangement of solutions of phi(x) = 2^n (n >= 0), where phi=A000010 is Euler's totient function. Each row corresponds to a particular n and its length is n+2 for 0 <= n <= 31, 32 for n >= 32. (This assumes that there are only 5 Fermat primes.)
1, 2, 3, 4, 6, 5, 8, 10, 12, 15, 16, 20, 24, 30, 17, 32, 34, 40, 48, 60, 51, 64, 68, 80, 96, 102, 120, 85, 128, 136, 160, 170, 192, 204, 240, 255, 256, 272, 320, 340, 384, 408, 480, 510, 257, 512, 514, 544, 640, 680, 768, 816, 960, 1020, 771, 1024, 1028, 1088
Offset: 0
Examples
Triangle begins: { 1, 2}, { 3, 4, 6}, { 5, 8, 10, 12}, {15, 16, 20, 24, 30}, {17, 32, 34, 40, 48, 60}, {51, 64, 68, 80, 96, 102, 120}, {85, 128, 136, 160, 170, 192, 204, 240}, ...
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
phiinv[ n_, pl_ ] := Module[ {i, p, e, pe, val}, If[ pl=={}, Return[ If[ n==1, {1}, {} ] ] ]; val={}; p=Last[ pl ]; For[ e=0; pe=1, e==0||Mod[ n, (p-1)pe/p ]==0, e++; pe*=p, val=Join[ val, pe*phiinv[ If[ e==0, n, n*p/pe/(p-1) ], Drop[ pl, -1 ] ] ] ]; Sort[ val ] ]; phiinv[ n_ ] := phiinv[ n, Select[ 1+Divisors[ n ], PrimeQ ] ]; Join@@(phiinv[ 2^# ]&/@Range[ 0, 10 ]) (* phiinv[ n, pl ] = list of x with phi(x)=n and all prime divisors of x in list pl. phiinv[ n ] = list of x with phi(x)=n *)
Extensions
Edited by Dean Hickerson, Jan 25 2002
Comments