A058218 Positive integers that cannot be represented in the form n=5|ab|+a+b for any choice of nonzero integers a and b (positive or negative).
1, 2, 4, 6, 8, 10, 12, 14, 18, 22, 26, 28, 30, 32, 36, 40, 44, 48, 50, 54, 58, 60, 62, 66, 76, 78, 82, 84, 94, 96, 98, 100, 102, 104, 114, 116, 120, 126, 132, 136, 138, 140, 144, 150, 154, 158, 162, 166, 170, 176, 184, 188, 190, 198, 202, 204, 208, 210, 212, 216, 220
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Maria Suzuki, Related to Alternative Formulations of the Twin Prime Problem, American Math. Monthly, 107 (2000) pp. 55-56.
Crossrefs
Programs
-
Maple
filter:= proc(n) nops(select(t -> t mod 5 = 1 or t mod 5 = 4, numtheory:-divisors(5*n+1))) = 2 and nops(select(t -> t mod 5 = 4, numtheory:-divisors(5*n-1)))=1 end proc: select(filter, [$1..1000]); # Robert Israel, Apr 07 2019
-
Mathematica
filterQ[n_] := Length[Select[Divisors[5 n + 1], Mod[#, 5] == 1 || Mod[#, 5] == 4&]] == 2 && Length[Select[Divisors[5 n - 1], Mod[#, 5] == 4&]] == 1; Select[Range[1000], filterQ] (* Jean-François Alcover, Aug 16 2020, after Robert Israel *)
Comments