This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A058220 #33 Aug 23 2024 20:36:18 %S A058220 1,3,5,15,5,59,159,189,569,105,1557,2549,2439,13797,25353,5627,24317, %T A058220 231425,164073 %N A058220 Ultra-useful primes: smallest k such that 2^(2^n) - k is prime. %C A058220 2^(2^16) - 5627 was found by Joel Levy in Feb 2004. - _Donovan Johnson_, Sep 13 2008 %C A058220 Corresponding numbers to entries a(1) to a(12) are proven primes, higher terms are probable primes. - _Matthias Baur_, Mar 17 2020 %H A058220 Rosetta Code, <a href="https://rosettacode.org/wiki/Ultra_useful_primes">Ultra-useful primes</a>. %F A058220 a(n) = A013603(2^n). - _Jinyuan Wang_, Jun 06 2020 %e A058220 For n = 3, we see that 2^(2^3) = 2^8 = 256, which is clearly not prime. %e A058220 256 - 1 = 255 = 3 * 5 * 17, so a(3) is not 1. %e A058220 256 - 2 = 254 = 2 * 127, so a(3) is not 2 either. %e A058220 256 - 3 = 253 = 11 * 23, so a(3) is not 3 either. %e A058220 256 - 5 = 251, which is prime, so a(3) = 5. %t A058220 ultraUseful[n_] := Module[{x = 2^(2^n)}, x - NextPrime[x, -1]]; Array[ultraUseful, 17] (* _Harvey P. Dale_, Jun 04 2011 *) %Y A058220 Cf. A001146, A013603, A058221. %K A058220 nonn,hard,nice,more %O A058220 1,2 %A A058220 _Warren D. Smith_, Nov 30 2000 %E A058220 a(16)-a(17) from _Donovan Johnson_, Sep 13 2008 %E A058220 a(18) from _Matthias Baur_, Mar 17 2020 %E A058220 a(19) from _Matthias Baur_, Apr 04 2020