This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A058257 #15 Feb 18 2021 00:43:13 %S A058257 1,0,1,0,0,1,1,1,1,0,3,2,1,0,0,0,3,5,6,6,6,0,0,3,8,14,20,26,71,71,71, %T A058257 68,60,46,26,0,413,342,271,200,132,72,26,0,0,0,413,755,1026,1226,1358, %U A058257 1430,1456,1456,1456,0,0,413,1168,2194,3420,4778,6208,7664,9120,10576 %N A058257 Triangle read by rows: this is a variant of A008280 in which 2 rows go from left to right, 2 from right to left, 2 from left to right, etc. %C A058257 Suggested by Atkinson article in Information Processing Letters. %D A058257 M. D. Atkinson, Partial orders and comparison problems, Sixteenth Southeastern Conference on Combinatorics, Graph Theory and Computing, (Boca Raton, Feb 1985), Congressus Numerantium 47, 77-88. %H A058257 Reinhard Zumkeller, <a href="/A058257/b058257.txt">Rows n = 0..120 of triangle, flattened</a> %H A058257 M. D. Atkinson, <a href="https://doi.org/10.1016/0020-0190(85)90057-2">Zigzag permutations and comparisons of adjacent elements</a>, Information Processing Letters 21 (1985), 187-189. %H A058257 J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996), 44-54 (<a href="http://neilsloane.com/doc/bous.txt">Abstract</a>, <a href="http://neilsloane.com/doc/bous.pdf">pdf</a>, <a href="http://neilsloane.com/doc/bous.ps">ps</a>). %H A058257 <a href="/index/Bo#boustrophedon">Index entries for sequences related to boustrophedon transform</a> %e A058257 Triangle begins: %e A058257 1; %e A058257 0, 1; %e A058257 0, 0, 1; %e A058257 1, 1, 1, 0; %e A058257 3, 2, 1, 0, 0; %e A058257 0, 3, 5, 6, 6, 6; %e A058257 ... %o A058257 (Haskell) %o A058257 a058257 n k = a058257_tabl !! n !! k %o A058257 a058257_row n = a058257_tabl !! n %o A058257 a058257_tabl = [1] : ox 0 [1] where %o A058257 ox turn xs = ys : ox (mod (turn + 1) 4) ys %o A058257 where ys | turn <= 1 = scanl (+) 0 xs %o A058257 | otherwise = reverse $ scanl (+) 0 $ reverse xs %o A058257 -- _Reinhard Zumkeller_, Nov 01 2013 %Y A058257 Cf. A058258, A008280, A000111. %K A058257 nonn,easy,tabl,nice %O A058257 0,11 %A A058257 _N. J. A. Sloane_, Dec 06 2000 %E A058257 More terms from Larry Reeves (larryr(AT)acm.org), Dec 12 2000