cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058262 a(n) is the quotient obtained when the totient of primorial (that is, the product of p-1 values) is divided by the LCM of the same p-1 values.

This page as a plain text file.
%I A058262 #15 Jun 10 2022 17:14:41
%S A058262 1,1,2,4,8,96,384,2304,4608,18432,552960,19906560,796262400,
%T A058262 33443020800,66886041600,267544166400,535088332800,32105299968000,
%U A058262 2118949797888000,148326485852160000,10679506981355520000
%N A058262 a(n) is the quotient obtained when the totient of primorial (that is, the product of p-1 values) is divided by the LCM of the same p-1 values.
%H A058262 Muniru A Asiru, <a href="/A058262/b058262.txt">Table of n, a(n) for n = 0..150</a>
%e A058262 n=7: lcm(2-1, 3-1, 5-1, 7-1, 11-1, 13-1, 17-1) = lcm(1,2,4,6,10,12,16) = 240; phi(2*3*5*7*11*13*17) = phi(510510) = 92160 = A005867(8); a(7) = 92160/240 = 384.
%p A058262 with(numtheory):
%p A058262 nmax:=22: p:=seq([seq(ithprime(k)-1,k = 1 .. n)],n=1..nmax):
%p A058262 a:seq(phi(mul(ithprime(i),i=1..n))/lcm(seq(p[n][i],i=1..nops(p[n]))),n=1..nmax); # _Muniru A Asiru_, Jul 08 2018
%o A058262 (PARI) a(n) = my(v=vector(n+1, k, prime(k)-1)); prod(k=1, #v, v[k])/lcm(v); \\ _Michel Marcus_, Jul 08 2018
%Y A058262 Cf. A000010, A002110, A005867, A003418.
%K A058262 nonn
%O A058262 0,3
%A A058262 _Labos Elemer_, Dec 06 2000
%E A058262 Definition revised by Editors, Jul 15 2018