This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A058266 #20 Jan 14 2023 08:45:19 %S A058266 1,2,2,4,3,6,3,7,5,7,4,12,4,8,8,11,5,13,5,14,9,10,5,19,8,11,10,16,6, %T A058266 21,6,16,11,12,11,25,7,12,12,23,7,24,7,19,18,13,7,30,10,19,13,20,8,26, %U A058266 13,26,14,15,8,39,8,15,20,24,14,28,9,22,15,28,9,41,9 %N A058266 An approximation to sigma_{1/2}(n): floor( sum_{ d divides n } sqrt(d) ). %H A058266 Amiram Eldar, <a href="/A058266/b058266.txt">Table of n, a(n) for n = 1..10000</a> %F A058266 Sum_{k=1..n} a(k) ~ (2/3)*zeta(3/2) * n^(3/2). - _Amiram Eldar_, Jan 14 2023 %p A058266 with(numtheory); f := proc(n) local d, t1, t2; t2 := 0; t1 := divisors(n); for d in t1 do t2 := t2 + sqrt(d) end do; t2 end proc; # exact value of sigma_{1/2}(n) %p A058266 with(numtheory):seq(floor(sigma[1/2](n)),n=1..80); %t A058266 f[n_] := Floor@DivisorSigma[1/2, n]; Array[f, 73] (* _Robert G. Wilson v_, Aug 17 2017*) %o A058266 (PARI) a(n) = floor(sumdiv(n, d, sqrt(d))); \\ _Michel Marcus_, Aug 17 2017 %Y A058266 Cf. A000203, A001157, A058267, A058268, A078434, A086671. %K A058266 nonn %O A058266 1,2 %A A058266 _N. J. A. Sloane_, Dec 08 2000