This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A058280 #10 Jan 03 2016 15:47:43 %S A058280 1,1,3,2,1,1,6,1,28,13,1,1,2,18,1,1,1,83,1,4,1,2,4,1,288,1,90,1,12,1, %T A058280 1,7,1,3,1,6,1,2,71,9,3,1,5,36,1,2,2,1,1,1,2,5,9,8,1,7,1,2,2,1,63,1,4, %U A058280 3,1,6,1,1,1,5,1,9,2,5,4,1,2,1,1,2,20,1,1,2,1,10,5,2,1,100,11,1,9,1,2,1 %N A058280 Continued fraction for square root of Pi. %C A058280 sqrt(Pi) = 1.7724538509055160272981674833411451827975494561223871282138... - _Harry J. Smith_, May 01 2009 %H A058280 Harry J. Smith, <a href="/A058280/b058280.txt">Table of n, a(n) for n = 0..20000</a> %H A058280 G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a> %H A058280 <a href="/index/Con#confC">Index entries for continued fractions for constants</a> %e A058280 sqrt(Pi) = 1 + 1/(1 + 1/(3 + 1/(2 + 1/(1 + ...)))). - _Harry J. Smith_, May 01 2009 %t A058280 ContinuedFraction[ Sqrt[Pi], 100] %o A058280 (PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(sqrt(Pi)); for (n=1, 20001, write("b058280.txt", n-1, " ", x[n])); } \\ _Harry J. Smith_, May 01 2009 %K A058280 cofr,nonn,easy %O A058280 0,3 %A A058280 _Robert G. Wilson v_, Dec 07 2000 %E A058280 More terms from _Harvey P. Dale_, Dec 29 2000