This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A058287 #19 Jun 16 2022 03:19:35 %S A058287 23,7,9,3,1,1,591,2,9,1,2,34,1,16,1,30,1,1,4,1,2,108,2,2,1,3,1,7,1,2, %T A058287 2,2,1,2,3,2,166,1,2,1,4,8,10,1,1,7,1,2,3,566,1,2,3,3,1,20,1,2,19,1,3, %U A058287 2,1,2,13,2,2,11,3,1,2,1,7,2,1,1,1,2,1,19,1,1,12,11,1,4,1,6,1,2,18,1,2 %N A058287 Continued fraction for e^Pi. %C A058287 "The transcendentality of e^{Pi} was proved in 1929." (Wells) %D A058287 Jan Gullberg, "Mathematics, From the Birth of Numbers," W. W. Norton and Company, NY and London, 1997, page 86. %D A058287 David Wells, "The Penguin Dictionary of Curious and Interesting Numbers," Revised Edition, Penguin Books, London, England, 1997, page 81. %H A058287 Harry J. Smith, <a href="/A058287/b058287.txt">Table of n, a(n) for n = 0..20000</a> %H A058287 V. Yu. Irkhin, <a href="https://arxiv.org/abs/2206.07174">Relations between e and Pi: Nilakantha's series and Stirling's formula</a>, arXiv:2206.07174 [math.HO], 2022. %H A058287 G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a> %H A058287 <a href="/index/Con#confC">Index entries for continued fractions for constants</a> %e A058287 e^Pi = 23.140692632779269005... = 23 + 1/(7 + 1/(9 + 1/(3 + 1/(1 + ...)))). - _Harry J. Smith_, Apr 19 2009 %p A058287 with(numtheory): cfrac(evalf((exp(1))^(evalf(Pi)),2560),256,'quotients'); %t A058287 ContinuedFraction[ E^Pi, 100] %o A058287 (PARI) \p 300 contfrac(exp(1)^Pi) %o A058287 (PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(exp(1)^Pi); for (n=0, 20000, write("b058287.txt", n, " ", x[n+1])); } \\ _Harry J. Smith_, Apr 19 2009 %Y A058287 Cf. A039661. %K A058287 cofr,nonn,easy %O A058287 0,1 %A A058287 _Robert G. Wilson v_, Dec 07 2000 %E A058287 More terms from _Jason Earls_, Jun 21 2001