This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A058297 #10 Apr 14 2014 12:16:19 %S A058297 2,10,1,1,2,1,3,1,1,12,3,5,1,1,2,1,6,1,11,4,42,1,2,1,1,1,1,1,2,1,16,1, %T A058297 1,1,1,6,2,5,22,6,31,2,1,4,17,2,1,5,2,4,5,2,74,45,1,24,3,1,13,1,18,2, %U A058297 8,1,1,5,2,1,1,2,10,1,6,6,1,1,7,21,1,1,2,2,8,3,2,2,4,9,7,4,106,3,2,1,3,2 %N A058297 Continued fraction for Wallis' number (A007493). %C A058297 The real solution to the equation x^3 - 2x - 5 = 0. %D A058297 David Wells, "The Penguin Dictionary of Curious and Interesting Numbers," Revised Edition, Penguin Books, London, England, 1997, page 27. %H A058297 Harry J. Smith, <a href="/A058297/b058297.txt">Table of n, a(n) for n = 0..20000</a> %H A058297 G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a> %H A058297 <a href="/index/Con#confC">Index entries for continued fractions for constants</a> %e A058297 2.09455148154232659148238654... = 2 + 1/(10 + 1/(1 + 1/(1 + 1/(2 + ...)))) %t A058297 ContinuedFraction[ 1/3*(135/2 - (3*Sqrt[1929])/2)^(1/3) + (1/2*(45 + Sqrt[1929]))^(1/3) / 3^(2/3), 100] %o A058297 (PARI) { allocatemem(932245000); default(realprecision, 21000); x=NULL; p=x^3 - 2*x - 5; rs=polroots(p); r=real(rs[1]); c=contfrac(r); for (n=1, 20001, write("b058297.txt", n-1, " ", c[n])); } \\ _Harry J. Smith_, May 03 2009 %o A058297 (PARI) contfrac(polrootsreal(x^3-2*x-5)[1]) \\ _Charles R Greathouse IV_, Apr 14 2014 %Y A058297 Cf. A007493. %K A058297 nonn,cofr %O A058297 0,1 %A A058297 _Robert G. Wilson v_, Dec 07 2000