This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A058302 #35 Jun 07 2024 08:03:07 %S A058302 3,23,31,59,71,83,107,139,151,167,211,223,239,251,271,283,307,311,331, %T A058302 359,379,439,463,467,487,499,547,587,643,647,659,719,751,811,827,859, %U A058302 883,907,911,919,967,971,983,1031,1039,1063,1103,1163,1171,1223 %N A058302 Primes p such that p | ((p-1)/2)! -1. %C A058302 p | (p-1)! +1 iff p is a prime (Wilson's theorem). All of the above primes are congruent to 3 (mod 4). %C A058302 Primes p such that p | ((p-3)/2)! +2. - _Davide Rotondo_, Jun 03 2024 %D A058302 J. B. Cosgrave, A Mersenne-Wieferich Odyssey, Manuscript, May 2022. See Section 18.5. %H A058302 Amiram Eldar, <a href="/A058302/b058302.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Vincenzo Librandi) %H A058302 Math Overflow, <a href="http://mathoverflow.net/questions/16141/primes-p-such-that-p-1-21-mod-p">Primes P such that ((P-1)/2)!=1 mod P</a> [From _T. D. Noe_, Feb 24 2010] %t A058302 Select[ Range[ 1225 ], PrimeQ[ # ] && Mod[ ((# - 1)/2)! - 1, # ] == 0 & ] %t A058302 Select[Prime[Range[200]],Divisible[((#-1)/2)!-1,#]&] (* _Harvey P. Dale_, Aug 29 2022 *) %o A058302 (PARI) forprime(p=3,10^4,if( Mod(((p-1)/2)!,p)==1,print1(p,", "))); /* _Joerg Arndt_, Apr 12 2011 */ %o A058302 (PARI) is(p)=isprime(p) && p%4==3 && if(p>9, qfbclassno(-p)%4, p)==3 \\ _Charles R Greathouse IV_, Nov 04 2013 %o A058302 (Magma) [p: p in PrimesInInterval(3,1230) | IsDivisibleBy(Factorial((p-1) div 2)-1, p)]; // _Bruno Berselli_, Apr 13 2011 %Y A058302 Cf. A002145, A055939. %K A058302 nonn %O A058302 1,1 %A A058302 _Robert G. Wilson v_, Dec 08 2000