This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A058304 #51 Feb 16 2025 08:32:43 %S A058304 0,9,11,99,1,10,9,999999999999,1,8,10,1,99,11,9, %T A058304 999999999999999999999999999999999999999999999999999999999999999999999999, %U A058304 1,8,11,99,1,10,8,1,999999999999,9,10,1,99,11,9 %N A058304 Continued fraction for Liouville's number (A012245). %C A058304 From _A.H.M. Smeets_, Jun 06 2018: (Start) %C A058304 Except for the first term, the only values that occur in this sequence are 1,8,9,10,11,and values 10^((m-1)*m!)-1 for m > 1. The probability of occurrence P(a(n) = k) are given by: %C A058304 P(a(n) = 1) = 1/4, %C A058304 P(a(n) = 8) = 1/8, %C A058304 P(a(n) = 9) = 1/8, %C A058304 P(a(n) = 10) = 1/8, %C A058304 P(a(n) = 11) = 1/8 and %C A058304 P(a(n) = 10^((m-1)*m!)-1) = 2^-(m+1) for m > 1. (End) %D A058304 Harold M. Stark, "An Introduction to Number Theory," The MIT Press, Cambridge, MA and London, England, Eighth Printing, 1994, pages 172 - 177. %H A058304 Muniru A Asiru, <a href="/A058304/b058304.txt">Table of n, a(n) for n = 0..62</a> %H A058304 J. O. Shallit, <a href="https://doi.org/10.1016/0022-314X(82)90047-6">Simple Continued Fractions for Some Irrational Numbers II</a>, J. Number Theory 14 (1982), 228-231. %H A058304 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LiouvillesConstant.html">Liouville's Constant</a> %H A058304 G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a> %H A058304 <a href="/index/Con#confC">Index entries for continued fractions for constants</a> %F A058304 From _A.H.M. Smeets_, Jun 26 2018: (Start) %F A058304 a(n) = 1 iff n in A317331, %F A058304 a(n) = 8 iff n in A317332, %F A058304 a(n) = 9 iff n in A317333, %F A058304 a(n) = 10 iff n = 8*m - 6 + 3*(m mod 2) for m > 0, %F A058304 a(n) = 11 iff n = 8*m - 3 - 3*(m mod 2) for m > 0, %F A058304 a(n) = 10^((m-1)*m!)-1 iff n in {2^m*(1+k*4) - 1 | k >= 0} union {2^m*(3+k*4) | k >= 0} for m > 1. (End) %e A058304 0.1100010000000000000000010... = 0 + 1/(9 + 1/(11 + 1/(99 + 1/(1 + ...)))). - _Harry J. Smith_, May 15 2009 %p A058304 with(numtheory): cfrac(add(1/10^factorial(n),n=1..7),62,'quotients'); # _Muniru A Asiru_, Aug 08 2018 %t A058304 ContinuedFraction[ Sum[ 1 /10^(n!), {n, 1, 7} ], 40 ] %o A058304 (PARI) { allocatemem(932245000); default(realprecision, 200000); x=contfrac(suminf(n=1, 1.0/10^n!)); for (n=1, 255, write("b058304.txt", n, " ", x[n])); } \\ _Harry J. Smith_, May 15 2009 %o A058304 (Python) %o A058304 n,f,i,p,q,base = 1,1,0,0,1,10 %o A058304 while i < 1000: %o A058304 i,p,q = i+1,p*base,q*base %o A058304 if i == f: %o A058304 p,n = p+1,n+1 %o A058304 f = f*n %o A058304 n,a,j = 0,0,0 %o A058304 while p%q > 0: %o A058304 a,f,p,q = a+1,p//q,q,p%q %o A058304 print(a-1,f) %o A058304 # _A.H.M. Smeets_, Aug 03 2018 %Y A058304 Cf. A012245. %Y A058304 Cf. A317413 (in base 2), A317414 (in base 3) A317661 (in base 4 and general). %K A058304 cofr,nonn %O A058304 0,2 %A A058304 _Robert G. Wilson v_, Dec 08 2000 %E A058304 Offset changed to 0 on the advice of _A.H.M. Smeets_ by _Muniru A Asiru_, Aug 11 2018