cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058367 Number of ways to cover (without overlapping) a ring lattice (necklace) of n sites with molecules that are 6 sites wide.

This page as a plain text file.
%I A058367 #4 Dec 27 2024 01:21:57
%S A058367 1,1,1,1,1,7,8,9,10,11,12,19,27,36,46,57,69,88,115,151,197,254,323,
%T A058367 411,526,677,874,1128,1451,1862,2388,3065,3939,5067,6518,8380,10768,
%U A058367 13833,17772,22839,29357,37737,48505,62338,80110,102949,132306,170043,218548
%N A058367 Number of ways to cover (without overlapping) a ring lattice (necklace) of n sites with molecules that are 6 sites wide.
%C A058367 This comment covers a family of sequences which satisfy a recurrence of the form a(n) = a(n-1) + a(n-m), with a(n) = 1 for n = 1...m-1, a(m) = m+1. The generating function is (x+m*x^m)/(1-x-x^m). Also a(n) = 1 + n*Sum_{i=1..n/m} binomial(n-1-(m-1)*i, i-1)/i. This gives the number of ways to cover (without overlapping) a ring lattice (or necklace) of n sites with molecules that are m sites wide. Special cases: m=2: A000204, m=3: A001609, m=4: A014097, m=5: A058368, m=6: A058367, m=7: A058366, m=8: A058365, m=9: A058364.
%D A058367 E. Di Cera and Y. Kong, Theory of multivalent binding in one and two-dimensional lattices, Biophysical Chemistry, Vol. 61 (1996), pp. 107-124.
%D A058367 Y. Kong, General recurrence theory of ligand binding on a three-dimensional lattice, J. Chem. Phys. Vol. 111 (1999), pp. 4790-4799.
%F A058367 a(n) = 1 + n*sum(binomial(n-1-5*i, i-1)/i, i=1..n/6). a(n) = a(n-1) + a(n-6), a(n) = 1 for n = 1..5, a(6) = 7. generating function = (x+6*x^6)/(1-x-x^6).
%e A058367 a(6) = 7 because there is one way to put zero molecule to the necklace and 6 ways to put one molecule.
%Y A058367 Cf. A000079, A003269, A003520, A005708, A005709, A005710.
%K A058367 nonn
%O A058367 1,6
%A A058367 Yong Kong (ykong(AT)curagen.com), Dec 17 2000