cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058381 Number of series-parallel networks with n labeled edges, multiple edges not allowed.

This page as a plain text file.
%I A058381 #41 Dec 16 2024 12:15:30
%S A058381 0,1,1,4,20,156,1472,17396,239612,3827816,69071272,1394315088,
%T A058381 31081310944,758901184432,20135117147056,576927779925568,
%U A058381 17752780676186432,583910574851160000,20443098012485430272,759064322969950283072,29793617955495321025472
%N A058381 Number of series-parallel networks with n labeled edges, multiple edges not allowed.
%H A058381 Steven R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/">Series-parallel networks</a>
%H A058381 Steven R. Finch, <a href="/A000084/a000084_2.pdf">Series-parallel networks</a>, July 7, 2003. [Cached copy, with permission of the author]
%H A058381 J. W. Moon, <a href="http://dx.doi.org/10.1016/S0304-0208(08)73057-3">Some enumerative results on series-parallel networks</a>, Annals Discrete Math., 33 (1987), 199-226 (the sequence V_n).
%H A058381 <a href="/index/Mo#Moon87">Index entries for sequences mentioned in Moon (1987)</a>
%F A058381 E.g.f.: -2*LambertW(-1/2*exp(-1/2)*(1+x)^(1/2))-1. - _Vladeta Jovovic_, Aug 21 2006
%F A058381 a(n) = Sum(m=1..n, (Sum(k=0..m-1, (m+k-1)!*Sum(j=0..k, ((-1)^j *Sum(L=0..j, (2^(j-l)*(-1)^L*Stirling1(m-L+j-1,j-L))/(l!*(m-L+j-1)!)))/(k-j)!)))*Stirling1(n,m)). - _Vladimir Kruchinin_, Feb 17 2012
%F A058381 a(n) ~ n^(n-1) / (sqrt(2) * (4-exp(1))^(n-1/2)). - _Vaclav Kotesovec_, Jul 09 2013
%F A058381 a(n) = Sum_{k=1..n} Stirling1(n, k) * A006351(k), n > 0. - _Sean A. Irvine_, Feb 03 2018
%t A058381 max=19; f[x_] := -2*ProductLog[-Sqrt[1+x]/(2*Sqrt[E])]-1;
%t A058381 CoefficientList[Series[f[x], {x, 0, max}], x]*Range[0, max]! (* _Jean-François Alcover_, May 21 2012, after _Vladeta Jovovic_ *)
%o A058381 (Maxima) a(n):=sum((sum((m+k-1)!*sum(((-1)^j*sum((2^(j-l)*(-1)^l *stirling1(m-l+j-1,j-l))/(l!*(m-l+j-1)!),l,0,j))/(k-j)!,j,0,k),k,0,m-1)) *stirling1(n,m),m,1,n); /* _Vladimir Kruchinin_, Feb 17 2012 */
%Y A058381 Equals A058379 + A058380.
%Y A058381 Cf. A006351.
%K A058381 nonn,nice,easy
%O A058381 0,4
%A A058381 _N. J. A. Sloane_, Dec 19 2000