cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058402 Coefficient triangle of polynomials (rising powers) related to Pell number convolutions. Companion triangle is A058403.

This page as a plain text file.
%I A058402 #12 Aug 05 2022 22:27:18
%S A058402 1,22,8,588,376,56,19656,17024,4576,384,801360,848096,313504,48256,
%T A058402 2624,38797920,47494272,21685888,4643072,468608,17920,2181332160,
%U A058402 2986217856,1590913920,424509952,60136448,4307456,122368,139864717440
%N A058402 Coefficient triangle of polynomials (rising powers) related to Pell number convolutions. Companion triangle is A058403.
%C A058402 The row polynomials are p(k,x) := sum(a(k,m)*x^m,m=0..k), k=0,1,2,...
%C A058402 The k-th convolution of P0(n) := A000129(n+1) n >= 0, (Pell numbers starting with P0(0)=1) with itself is Pk( n) := A054456(n+k,k) = (p(k-1,n)*(n+1)*2*P0(n+1) + q(k-1,n)*(n+2)*P0(n))/(k!*8^k)), k=1,2,..., where the companion polynomials q(k,n) := sum(b(k,m)*n^m,m=0..k), k >= 0, are the row polynomials of triangle b(k,m)= A058403(k,m).
%H A058402 W. Lang, <a href="/A058402/a058402_3.txt">First 7 rows, also for A058403</a>.
%F A058402 Recursion for row polynomials defined in the comments: p(k, n)= 4*(n+2)*p(k-1, n+1)+2*(n+2*(k+1))*p(k-1, n)+(n+3)*q(k-1, n); q(k, n)= 4*(n+1)*p(k-1, n+1)+2*(n+2*(k+1))*q(k-1, n+1), k >= 1. [Corrected by _Sean A. Irvine_, Aug 05 2022]
%e A058402 k=2: P2(n)=((22+8*n)*(n+1)*2*P0(n+1)+(20+8*n)*(n+2)*P0(n))/128, cf. A054457.
%e A058402 1; 22,8; 588,376,56; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0).
%Y A058402 Cf. A000129, A054456, A058403, A058404-5 (falling powers).
%K A058402 nonn,tabl
%O A058402 0,2
%A A058402 _Wolfdieter Lang_, Dec 11 2000
%E A058402 Link and cross-references added by _Wolfdieter Lang_, Jul 31 2002