cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A058404 Coefficient triangle of polynomials (falling powers) related to Pell number convolutions. Companion triangle is A058405.

Original entry on oeis.org

1, 8, 22, 56, 376, 588, 384, 4576, 17024, 19656, 2624, 48256, 313504, 848096, 801360, 17920, 468608, 4643072, 21685888, 47494272, 38797920, 122368, 4307456, 60136448, 424509952, 1590913920, 2986217856, 2181332160, 835584, 38055936
Offset: 0

Views

Author

Wolfdieter Lang, Dec 11 2000

Keywords

Comments

The row polynomials are p(k,x) := sum(a(k,m)*x^(k-m),m=0..k), k=0,1,2,..
The k-th convolution of P0(n) := A000129(n+1), n >= 0, (Pell numbers starting with P0(0)=1) with itself is Pk(n) := A054456(n+k,k) = (p(k-1,n)*(n+1)*2*P0(n+1) + q(k-1,n)*(n+2)*P0(n))/(k!*8^k), k=1,2,..., where the companion polynomials q(k,n) := sum(b(k,m)*n^(k-m),m=0..k), k >= 0, are the row polynomials of triangle b(k,m)= A058405(k,m).
a(k,0)= A057084(k), k >= 0 (conjecture).

Examples

			k=2: P2(n)=(8*n+22)*(n+1)*2*P0(n+1)+(8*n+20)*(n+2)*P0(n))/128, cf. A054457.
1; 8,22; 56,376,588; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0)
		

Crossrefs

Cf. A000129, A054456, A058405, A054457, A057084, A058402-3 (rising powers).

Formula

Recursion for row polynomials defined in the comments: see A058402.

Extensions

Link and cross-references added by Wolfdieter Lang, Jul 31 2002
Showing 1-1 of 1 results.