cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A058388 Total number of interior nodes in all essentially parallel series-parallel networks with n labeled edges, multiple edges not allowed.

Original entry on oeis.org

0, 0, 0, 3, 14, 195, 2059, 31150, 489012, 9073638, 183490118, 4135560660, 101421574440, 2706766547628, 77860733488732, 2405136817507216, 79353915366944784, 2786110796782734528, 103703080088989729280, 4079350129335095498048
Offset: 0

Views

Author

N. J. A. Sloane, Dec 20 2000

Keywords

References

  • J. W. Moon, Some enumerative results on series-parallel networks, Annals Discrete Math., 33 (1987), 199-226 (the sequence I_Q(n)*Q_pi).

Programs

  • Mathematica
    max = 19; q = CoefficientList[ InverseSeries[ Series[-1 + E^(1 + 2*a - E^a), {a, 0, max}], x], x]*Table[x^k, {k, 0, max}] // Total; r = q - Log[1 + x]; v = q + r; ev = (v*q - r)/(1 - v); eq = (ev + v)/(1 + v) - q; CoefficientList[ Series[eq, {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Feb 01 2013 *)

Formula

Let Q, R = Q-log(1+x), V=Q+R be the e.g.f.'s for A058379, A058380, A058381 resp. E.g.f.'s for A058475, A058406, A058388 are E_V = (V*Q-R)/(1-V), E_R = E_V/(1+V), E_Q = (E_V+V)/(1+V)-Q.

A058406 Total number of interior nodes in all series-parallel networks with n labeled edges, multiple edges not allowed.

Original entry on oeis.org

0, 0, 1, 2, 27, 199, 2645, 34236, 560742, 9958754, 201928954, 4480386932, 109410252512, 2897637649204, 82974026800132, 2550731142019568, 83843131420325008, 2933465366569951168, 108862752438362487648, 4270766898251635808800
Offset: 0

Views

Author

N. J. A. Sloane, Dec 20 2000

Keywords

References

  • J. W. Moon, Some enumerative results on series-parallel networks, Annals Discrete Math., 33 (1987), 199-226 (the sequence I_R(n)*Q_pi).

Programs

  • Mathematica
    max = 19; q = CoefficientList[ InverseSeries[ Series[-1 + E^(1 + 2*a - E^a), {a, 0, max}], x], x]*Table[x^k, {k, 0, max}] // Total; r = q - Log[1 + x]; v = q + r; ev = (v*q - r)/(1 - v); er = ev/(1 + v); CoefficientList[ Series[er, {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Feb 01 2013 *)

Formula

Let Q, R = Q-log(1+x), V=Q+R be the e.g.f.'s for A058379, A058380, A058381 resp. E.g.f.'s for A058475, A058406, A058388 are E_V = (V*Q-R)/(1-V), E_R = E_V/(1+V), E_Q = (E_V+V)/(1+V)-Q.
Showing 1-2 of 2 results.