This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A058484 #24 Jul 02 2018 20:25:35 %S A058484 1,6,21,56,126,258,498,924,1659,2884,4872,8028,12965,20586,32187, %T A058484 49616,75468,113412,168590,248148,361929,523348,750660,1068576, %U A058484 1510428,2120934,2959692,4105808,5663814,7771452,10609576,14414676,19494855,26249984,35197536 %N A058484 McKay-Thompson series of class 12F for Monster. %H A058484 Vaclav Kotesovec, <a href="/A058484/b058484.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..148 from G. A. Edgar) %H A058484 D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra 22, No. 13, 5175-5193 (1994). %H A058484 <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a> %F A058484 a(n) ~ exp(2*Pi*sqrt(n/3)) / (2 * 3^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Sep 10 2015 %F A058484 From _G. A. Edgar_, Mar 13 2017: (Start) %F A058484 Expansion of q^(1/2)*(eta(q^2)*eta(q^3) / (eta(q)*eta(q^6)))^6 in powers of q. %F A058484 T12F(q) = T6B(q^2)^(1/2) with T6B the g.f. of A121665, the convolution square of A058484. (End) %e A058484 T12F = 1/q + 6*q + 21*q^3 + 56*q^5 + 126*q^7 + 258*q^9 + 498*q^11 + ... %t A058484 nmax = 50; CoefficientList[Series[Product[((1+x^(3*k-1))*(1+x^(3*k-2)))^6, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Sep 10 2015 *) %t A058484 eta[q_] := q^(1/24)*QPochhammer[q]; A := q^(1/2)*(eta[q^2]*eta[q^3]/(eta[q]*eta[q^6]))^6; a := CoefficientList[Series[A, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* _G. C. Greubel_, Jul 01 2018 *) %o A058484 (PARI)q='q+O('q^66); Vec( eta(q^2)^6*eta(q^3)^6 / (eta(q)^6*eta(q^6)^6) ) \\ _Joerg Arndt_, Mar 13 2017 %Y A058484 Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc. %K A058484 nonn %O A058484 0,2 %A A058484 _N. J. A. Sloane_, Nov 27 2000 %E A058484 More terms from _Vaclav Kotesovec_, Sep 10 2015