cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058582 Expansion of (1+3*x+4*x^2)/(1-4*x^2+4*x^4).

Original entry on oeis.org

1, 3, 8, 12, 28, 36, 80, 96, 208, 240, 512, 576, 1216, 1344, 2816, 3072, 6400, 6912, 14336, 15360, 31744, 33792, 69632, 73728, 151552, 159744, 327680, 344064, 704512, 737280, 1507328, 1572864, 3211264, 3342336, 6815744, 7077888
Offset: 0

Views

Author

N. J. A. Sloane, Dec 26 2000

Keywords

Comments

Is a(n) the (n-1)-st elementary symmetric function of first n terms of (2,1,2,1,2,1,2,...)? See the Mathematica section. [Clark Kimberling, Dec 29 2011]

Examples

			a(0) = 1*1 = 1, a(1) = 3*1 = 3, a(2) = 4*2 = 8, a(3) = 6*2 = 12, a(4) = 7*4 = 28, a(5) = 9*4 = 36, a(6) = 10*8 = 80, a(7) = 12*8 = 96, a(8) = 13*16 = 208, ... - _Philippe Deléham_, Oct 11 2014
		

Crossrefs

a(n)=T(n, 1), array T as in A064861.

Programs

  • Mathematica
    f[k_] := 1 + Mod[k, 2]; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 33}]
    (* Clark Kimberling, Dec 29 2011 *)
  • PARI
    Vec((1+3*x+4*x^2)/(1-4*x^2+4*x^4)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

Formula

a(n) = A032766(n+1)*A016116(n). - Philippe Deléham, Oct 11 2014