This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A058715 #22 Oct 11 2019 06:26:04 %S A058715 1,11,106,1232,22172,803583,70820187,16122092568 %N A058715 Number of loopless matroids of rank 3 on n labeled points. %C A058715 The sequence was updated based on more recent references by W. M. B. Dukes. The calculation of a(9) and a(10) depends on the values of A056642 for n = 9 and n = 10. Note that (A056642) - 1 is column k = 3 of A058720. - _Petros Hadjicostas_, Oct 09 2019 %H A058715 W. M. B. Dukes, <a href="http://www.stp.dias.ie/~dukes/matroid.html">Tables of matroids</a>. %H A058715 W. M. B. Dukes, <a href="https://web.archive.org/web/20030208144026/http://www.stp.dias.ie/~dukes/phd.html">Counting and Probability in Matroid Theory</a>, Ph.D. Thesis, Trinity College, Dublin, 2000. %H A058715 W. M. B. Dukes, <a href="https://arxiv.org/abs/math/0411557">The number of matroids on a finite set</a>, arXiv:math/0411557 [math.CO], 2004. %H A058715 W. M. B. Dukes, <a href="http://emis.impa.br/EMIS/journals/SLC/wpapers/s51dukes.html">On the number of matroids on a finite set</a>, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g. %H A058715 <a href="/index/Mat#matroid">Index entries for sequences related to matroids</a> %F A058715 a(n) = Sum_{i = 3..n} Stirling2(n,i) * (A056642(i) - 1) = Sum_{i = 3..n} A008277(n,i) * A058720(n,3) for n >= 3. [Dukes (2004), p. 3; see the equation with the Stirling numbers of the second kind.] - _Petros Hadjicostas_, Oct 10 2019 %Y A058715 Column k=3 of both A058710 and A058711 (which are the same except for column k=0). %Y A058715 Cf. A008277, A056442, A058720. %K A058715 nonn %O A058715 3,2 %A A058715 _N. J. A. Sloane_, Dec 31 2000 %E A058715 a(8) corrected by and more terms from _Petros Hadjicostas_, Oct 09 2019