cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058765 Primes of the form 3^k - 2^k.

This page as a plain text file.
%I A058765 #27 Sep 08 2022 08:45:02
%S A058765 5,19,211,129009091,68629840493971,617671248800299,
%T A058765 19383245658672820642055731,14130386091162273752461387579,
%U A058765 1546132562196033990574082188840405015112916155251
%N A058765 Primes of the form 3^k - 2^k.
%H A058765 Vincenzo Librandi, <a href="/A058765/b058765.txt">Table of n, a(n) for n = 1..12</a>
%F A058765 a(n) = A001047(A057468(n)).
%p A058765 select(isprime, [seq(3^n - 2^n, n=0..200)]); # _Muniru A Asiru_, Mar 04 2018
%t A058765 Select[Table[3^n-2^n, {n,0,2200}], PrimeQ] (* _Vincenzo Librandi_, Dec 08 2011 *)
%o A058765 (Magma) [a: n in [0..300] | IsPrime(a) where a is  3^n - 2^n]; // _Vincenzo Librandi_, Dec 08 2011
%o A058765 (GAP) Filtered(List([1..200],n->3^n - 2^n),IsPrime); # _Muniru A Asiru_, Mar 04 2018
%o A058765 (PARI) lista(nn) = for(k=1, nn, if(isprime(p=3^k-2^k), print1(p", "))) \\ _Altug Alkan_, Mar 04 2018
%Y A058765 Cf. A001047 (3^n-2^n) and A057468 (k such that 3^k-2^k is prime).
%K A058765 nonn
%O A058765 1,1
%A A058765 _N. J. A. Sloane_, Jan 02 2001