This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A058796 #39 Sep 08 2022 08:45:02 %S A058796 33,492,2055,5898,13797,28248,52587,91110,149193,233412,351663,513282, %T A058796 729165,1011888,1375827,1837278,2414577,3128220,4000983,5058042, %U A058796 6327093,7838472,9625275,11723478,14172057,17013108,20291967,24057330 %N A058796 Row 5 of A007754. %C A058796 a(n) is divisible by n+3. %H A058796 Seiichi Manyama, <a href="/A058796/b058796.txt">Table of n, a(n) for n = 0..10000</a> %H A058796 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1). %F A058796 From _Colin Barker_, Jan 16 2013: (Start) %F A058796 a(n) = 33 + 173*n + 189*n^2 + 81*n^3 + 15*n^4 + n^5. %F A058796 a(n) = (n + 3)*(n^4 + 12*n^3 + 45*n^2 + 54*n + 11). %F A058796 G.f.: 3*(6*x^5 - 37*x^4 + 96*x^3 - 134*x^2 + 98*x + 11) / (x-1)^6. %F A058796 (End) %F A058796 E.g.f.: (33 + 459*x + 552*x^2 + 196*x^3 + 25*x^4 + x^5)*exp(x). - _G. C. Greubel_, Nov 29 2018 %p A058796 seq(coeff(series(3*(6*x^5-37*x^4+96*x^3-134*x^2+98*x+11)/(1-x)^6,x,n+1), x, n), n = 0 .. 30); # _Muniru A Asiru_, Nov 30 2018 %t A058796 LinearRecurrence[{6, -15, 20, -15, 6, -1}, {33, 492, 2055, 5898, 13797, 28248}, 30] (* _Vincenzo Librandi_, Sep 22 2016 *) %o A058796 (Magma) [33+173*n+189*n^2+81*n^3+15*n^4+n^5: n in [0..40]]; // _Vincenzo Librandi_, Sep 22 2016 %o A058796 (PARI) vector(40, n, n--; 33 +173*n +189*n^2 +81*n^3 +15*n^4 +n^5) \\ _G. C. Greubel_, Nov 29 2018 %o A058796 (Sage) [(33 +173*n +189*n^2 +81*n^3 +15*n^4 +n^5) for n in range(40)] # _G. C. Greubel_, Nov 29 2018 %o A058796 (GAP) List([0..40], n -> 33+173*n+189*n^2+81*n^3+15*n^4+n^5); # _G. C. Greubel_, Nov 29 2018 %o A058796 (Python) for n in range(0, 40): print(33+173*n+189*n**2+81*n**3+15*n**4+n**5, end=', ') # _Stefano Spezia_, Nov 30 2018 %Y A058796 Cf. A007754. %K A058796 nonn,easy %O A058796 0,1 %A A058796 _Christian G. Bower_, Dec 02 2000