This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A058800 #21 Dec 05 2019 07:08:33 %S A058800 1,1,1,0,1,2,7,27,126,664,3954,26190,190754,1514332,12998035, %T A058800 119803771,1178740932,12316480222,136060611189,1582930919092, %U A058800 19328253734491 %N A058800 Vertically indecomposable lattices on n unlabeled nodes. %D A058800 J. Heitzig and J. Reinhold, Counting finite lattices, Algebra Universalis, 48 (2002), 43-53. %H A058800 V. Gebhardt and S. Tawn, <a href="http://arxiv.org/abs/1609.08255">Constructing unlabelled lattices</a>, arXiv:1609.08255 [math.CO], 2016. %H A058800 J. Heitzig and J. Reinhold, <a href="http://www-ifm.math.uni-hannover.de/forschung/preprintsifm.html">Counting finite lattices</a>, preprint no. 298, Institut für Mathematik, Universität Hannover, Germany, 1999. %H A058800 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %t A058800 A006966 = Cases[Import["https://oeis.org/A006966/b006966.txt", "Table"], {_, _}][[All, 2]]; %t A058800 nmax = Length[A006966] - 1; %t A058800 B[x_] = Sum[A006966[[n + 1]] x^n, {n, 0, nmax}]; %t A058800 A[x_] = Sum[c[n] x^n, {n, 0, nmax}]; %t A058800 sol = CoefficientList[1 + A[x] - 1/(1 - B[x]) + O[x]^nmax, x] == 0 // Solve // First // Rest // Quiet; %t A058800 a[n_] := If[n <= 2, 1, c[n - 2] /. sol]; %t A058800 a /@ Range[0, nmax] (* _Jean-François Alcover_, Dec 05 2019 *) %Y A058800 a(n+1) is Inverse INVERT transform of A006966(n+1). %K A058800 nonn,hard,more %O A058800 0,6 %A A058800 _Christian G. Bower_, Dec 28 2000 %E A058800 a(19) (computed by Jipsen and Lawless) and a(20) from _Volker Gebhardt_, Sep 28 2016