cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058809 The sequence lambda(3,n), where lambda is defined in A055203. Number of ways of placing n identifiable positive intervals with a total of exactly three starting and/or finishing points.

This page as a plain text file.
%I A058809 #45 Feb 16 2025 08:32:43
%S A058809 0,0,6,24,78,240,726,2184,6558,19680,59046,177144,531438,1594320,
%T A058809 4782966,14348904,43046718,129140160,387420486,1162261464,3486784398,
%U A058809 10460353200,31381059606,94143178824,282429536478,847288609440
%N A058809 The sequence lambda(3,n), where lambda is defined in A055203. Number of ways of placing n identifiable positive intervals with a total of exactly three starting and/or finishing points.
%C A058809 For all n, a(n)=1*3^n-3*1^n+3*0^n-1*0^n [with 0^0=1] where powers are taken of triangular numbers and multiplied by binomial coefficients with alternating signs. - _Henry Bottomley_, Jan 05 2001
%C A058809 For n>=1, a(n) is the number of facets of the harmonic polytope. See Ardila and Escobar. - _Michel Marcus_, Jun 08 2020
%C A058809 For n >= 3, this is the number of acyclic orientations of the wheel graph of order n+1. - _Peter Kagey_, Oct 13 2020
%C A058809 Number of ternary strings of length n with at least 2 different digits. - _Enrique Navarrete_, Nov 20 2020
%C A058809 A level 1 Hanoi graph is a triangle. Level n+1 is formed from three copies of level n by adding edges between pairs of corner vertices of each pair of triangles.  This graph represents the allowable moves in the Towers of Hanoi problem with n disks.  a(n) is the number of degree 3 vertices in the level n Hanoi graph. - _Allan Bickle_, Aug 07 2024
%H A058809 Vincenzo Librandi, <a href="/A058809/b058809.txt">Table of n, a(n) for n = 0..1000</a>
%H A058809 Federico Ardila and Laura Escobar, <a href="https://arxiv.org/abs/2006.03078">The harmonic polytope</a>, arXiv:2006.03078 [math.CO], 2020.
%H A058809 Allan Bickle, <a href="https://allanbickle.wordpress.com/wp-content/uploads/2016/05/sierpinskigraphpaper2.pdf">Properties of Sierpinski Triangle Graphs</a>, Springer PROMS 448 (2021) 295-303.
%H A058809 A. Hinz, S. Klavzar, and S. Zemljic, <a href="https://doi.org/10.1016/j.dam.2016.09.024">A survey and classification of Sierpinski-type graphs</a>, Discrete Applied Mathematics 217 3 (2017), 565-600.
%H A058809 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HanoiGraph.html">Hanoi Graph</a>
%H A058809 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/WheelGraph.html">Wheel Graph</a>
%H A058809 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,-3).
%F A058809 For n>0, a(n) = 3^n-3 = 3*a(n-1)+6.
%F A058809 a(0)=0, a(1)=0, a(2)=6, a(n) = 4*a(n-1)-3*a(n-2). - _Harvey P. Dale_, Sep 29 2013
%F A058809 G.f.: 6*x^2 / ((1 - x)*(1 - 3*x)). - _Colin Barker_, Oct 14 2020
%e A058809 a(2)=6 since intervals a-a and b-b can be combined as a-ab-b, a-b-ab, ab-a-b, b-ab-a, b-a-ab, or ab-b-a.
%e A058809 The level 2 Hanoi graph has 9 vertices, 6 with degree 3, so a(2) = 6.
%t A058809 Join[{0},NestList[3#+6&,0,30]] (* or *) Join[{0},LinearRecurrence[{4,-3},{0,6},30]] (* _Harvey P. Dale_, Sep 29 2013 *)
%o A058809 (PARI) concat([0,0], Vec(6*x^2 / ((1 - x)*(1 - 3*x)) + O(x^30))) \\ _Colin Barker_, Oct 14 2020
%Y A058809 Cf. A059116, A059117.
%Y A058809 Cf. A000225, A029858, A058809, A375256 (Hanoi graphs).
%K A058809 nonn,easy
%O A058809 0,3
%A A058809 _N. J. A. Sloane_, Jan 03 2001