cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058884 Partial sums of the partition function (A000041), with the last term subtracted. Also the sum of the row of the character table for S_n corresponding to the partition n-1,1 for n>1. Also the sum over all partitions lambda of n of one less than the number of 1's in lambda.

This page as a plain text file.
%I A058884 #41 Jul 02 2025 16:02:00
%S A058884 -1,0,0,1,2,5,8,15,23,37,55,83,118,171,238,332,453,618,827,1107,1460,
%T A058884 1922,2504,3253,4188,5380,6860,8722,11024,13895,17421,21787,27122,
%U A058884 33677,41653,51390,63179,77496,94755,115600,140632,170725,206717,249804,301151,362367,435077,521439,623674,744695
%N A058884 Partial sums of the partition function (A000041), with the last term subtracted. Also the sum of the row of the character table for S_n corresponding to the partition n-1,1 for n>1. Also the sum over all partitions lambda of n of one less than the number of 1's in lambda.
%C A058884 For n>=1 number of up-steps in all partitions of n (represented as weakly increasing lists), see example. - _Joerg Arndt_, Sep 03 2014
%H A058884 Andrew Howroyd, <a href="/A058884/b058884.txt">Table of n, a(n) for n = 0..1000</a>
%H A058884 M. Archibald, A. Blecher, A. Knopfmacher, and M. E. Mays, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Archibald/arch3.html">Inversions and Parity in Compositions of Integers</a>, J. Int. Seq., Vol. 23 (2020), Article 20.4.1.
%H A058884 Anders Claesson, Atli Fannar FranklĂ­n, and Einar SteingrĂ­msson, <a href="https://arxiv.org/abs/2305.09457">Permutations with few inversions</a>, arXiv:2305.09457 [math.CO], 2023.
%H A058884 S. Heubach, A. Knopfmacher, M. E. Mays and A. Munagi, <a href="https://www.researchgate.net/publication/228671252_Inversions_in_compositions_of_integers">Inversions in Compositions of Integers</a>, Quaestiones Mathematicae 34 (2011), 187-202.
%F A058884 From _Andrew Howroyd_, Apr 21 2023: (Start)
%F A058884 a(n) = A000070(n-1) - A000041(n) for n > 0.
%F A058884 G.f.: (2*x - 1)*P(x)/(1 - x) where P(x) is the g.f. of A000041. (End)
%e A058884 a(6) = 8 because the 11 partitions of 6
%e A058884 01:  [ 1 1 1 1 1 1 ]
%e A058884 02:  [ 1 1 1 1 2 ]
%e A058884 03:  [ 1 1 1 3 ]
%e A058884 04:  [ 1 1 2 2 ]
%e A058884 05:  [ 1 1 4 ]
%e A058884 06:  [ 1 2 3 ]
%e A058884 07:  [ 1 5 ]
%e A058884 08:  [ 2 2 2 ]
%e A058884 09:  [ 2 4 ]
%e A058884 10:  [ 3 3 ]
%e A058884 11:  [ 6 ]
%e A058884 contain 0+1+1+1+1+2+1+0+1+0+0 = 8 up-steps. - _Joerg Arndt_, Sep 03 2014
%p A058884 a:= proc(n) uses combinat; add(numbpart(k), k=0..n-1)-numbpart(n) end:
%p A058884 seq(a(n), n=0..49);
%t A058884 p[n_] := IntegerPartitions[n]; l[n_] := Length[p[n]]; Table[Count[Flatten[p[n]], 1] - l[n], {n, 0, 30}] (* _Clark Kimberling_, Mar 08 2012 *)
%o A058884 (PARI) a(n) = {sum(k=0, n-1, numbpart(k)) - numbpart(n)} \\ _Andrew Howroyd_, Apr 21 2023
%o A058884 (PARI) Vec((2*x - 1)/(1 - x)/eta(x + O(x^51))) \\ _Andrew Howroyd_, Apr 21 2023
%Y A058884 Cf. A000041, A000070.
%Y A058884 Cf. A218074 (up-steps in partitions into distinct parts).
%K A058884 sign,easy
%O A058884 0,5
%A A058884 _Edward Early_, Jan 08 2001
%E A058884 More terms from _James Sellers_, Sep 28 2001