A058900 Inconsummate numbers in base 4: no number is this multiple of the sum of its digits (in base 4).
29, 41, 71, 83, 93, 111, 113, 114, 116, 117, 122, 123, 125, 135, 137, 143, 146, 153, 164, 167, 191, 197, 201, 237, 242, 263, 275, 279, 282, 284, 285, 291, 303, 305, 311, 323, 326, 327, 332, 359, 362, 369, 372, 375, 377, 382, 383, 389, 407, 410
Offset: 1
Links
- Daniel Mondot, Table of n, a(n) for n = 1..15650
Programs
-
Maple
For Maple code see A058906.
-
Python
from itertools import count, islice, combinations_with_replacement from sympy.ntheory import digits def A058900_gen(startvalue=1): # generator of terms >= startvalue for n in count(max(startvalue,1)): for l in count(1): if 3*l*n < 1<<((l-1)<<1): yield n break for d in combinations_with_replacement((0,1,2,3),l): if (s:=sum(d)) > 0 and sorted(digits(s*n,4)[1:]) == list(d): break else: continue break A058900_list = list(islice(A058900_gen(),20)) # Chai Wah Wu, May 10 2023