A058906 Inconsummate numbers in base 11: no number is this multiple of the sum of its digits (in base 11).
68, 70, 79, 80, 82, 92, 104, 200, 202, 212, 214, 224, 225, 248, 260, 314, 320, 332, 380, 392, 452, 458, 464, 490, 502, 508, 512, 513, 514, 518, 520, 524, 530, 562, 568, 574, 578, 579, 580, 584, 585, 590, 592, 595, 598, 599, 622, 628, 634, 635
Offset: 1
Programs
-
Maple
digitsum := proc (n,b) local i; add(i,i=convert(n,base,b)) end; b := 11:N := 43922; L := []: for n from 1 to N do k := digitsum(n,b): if (n mod k)=0 then L := [op(L), n/k] fi: od: M := []: for i from 1 to 1000 do if not(member(i,L)) then M := [op(M),i] fi od: lprint(M);
-
Mathematica
base = 11; Do[k = n; While[ Apply[ Plus, IntegerDigits[k, base] ]*n != k && k < 250n, k += n]; If[k == 250n, Print[n] ], {n, 1, 10^3} ]
-
Python
from itertools import count, islice, combinations_with_replacement from sympy.ntheory import digits def A058906_gen(startvalue=1): # generator of terms >= startvalue for n in count(max(startvalue,1)): for l in count(1): if 10*l*n < 11**(l-1): yield n break for d in combinations_with_replacement(range(11),l): if (s:=sum(d)) > 0 and sorted(digits(s*n,11)[1:]) == list(d): break else: continue break A058906_list = list(islice(A058906_gen(),20)) # Chai Wah Wu, May 09 2023