cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058929 Number of 2-connected claw-free labeled cubic graphs with 2n nodes.

This page as a plain text file.
%I A058929 #18 Apr 29 2019 17:49:52
%S A058929 0,1,60,2520,453600,59875200,10897286400,6701831136000,
%T A058929 2623194782208000,1338096104497152000,1633313557551836160000,
%U A058929 1324107982344764897280000,1408369399403068118016000000
%N A058929 Number of 2-connected claw-free labeled cubic graphs with 2n nodes.
%D A058929 G.-B. Chae, E. M. Palmer and R. W. Robinson, Computing the number of Claw-free Cubic Graphs with given Connectivity, preprint, 2001.
%H A058929 G.-B. Chae, <a href="/A058929/b058929.txt">Table of n, a(n) for n = 1..18</a>
%H A058929 G.-B. Chae, <a href="http://myhome.hanafos.com/~1234chae/myindex.htm">Home page</a>
%H A058929 G.-B. Chae, <a href="https://doi.org/10.1016/j.disc.2007.09.034">Counting labeled claw-free cubic graphs by connectivity</a>, Discrete Mathematics 308 (2008) 5136-5143.
%H A058929 G.-B. Chae, E. M. Palmer and R. W. Robinson, <a href="/A058929/a058929.pdf">Computing the number of Claw-free Cubic Graphs with given Connectivity</a>, Preprint, 2000. (Annotated scanned copy)
%Y A058929 Cf. A057848 (1-connected).
%K A058929 nonn
%O A058929 1,3
%A A058929 _N. J. A. Sloane_, Jan 12 2001