cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058930 Number of 3-connected claw-free cubic graphs with 6n nodes.

This page as a plain text file.
%I A058930 #12 Jan 17 2018 11:38:01
%S A058930 0,60,19958400,622452999168000,258520167388849766400000,
%T A058930 675289572271869736778268672000000,
%U A058930 7393367369949286697176489031997849600000000
%N A058930 Number of 3-connected claw-free cubic graphs with 6n nodes.
%D A058930 G.-B. Chae (chaegabb(AT)pilot.msu.edu), E. M. Palmer and R. W. Robinson, Computing the number of Claw-free Cubic Graphs with given Connectivity, preprint, 2001.
%H A058930 G.-B. Chae, <a href="/A058930/b058930.txt">Table of n, a(n) for n = 0..15</a>
%H A058930 G.-B. Chae, <a href="http://myhome.hanafos.com/~1234chae/myindex.htm">Home page</a>
%H A058930 G.-B. Chae, <a href="https://doi.org/10.1016/j.disc.2007.09.034">Counting labeled claw-free cubic graphs by connectivity</a>, Discrete Mathematics 308 (2008) 5136-5143.
%H A058930 G.-B. Chae, E. M. Palmer and R. W. Robinson, <a href="/A058929/a058929.pdf">Computing the number of Claw-free Cubic Graphs with given Connectivity</a>, Preprint, 2000. (Annotated scanned copy)
%Y A058930 Cf. A058931.
%K A058930 nonn
%O A058930 0,2
%A A058930 _N. J. A. Sloane_, Jan 12 2001