This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A058931 #17 Jan 17 2018 11:38:06 %S A058931 0,1,60,0,0,19958400,0,0,622452999168000,0,0,258520167388849766400000, %T A058931 0,0,675289572271869736778268672000000,0,0, %U A058931 7393367369949286697176489031997849600000000,0,0 %N A058931 Number of 3-connected claw-free cubic graphs with 2n nodes. %D A058931 G.-B. Chae (chaegabb(AT)pilot.msu.edu), E. M. Palmer and R. W. Robinson, Computing the number of Claw-free Cubic Graphs with given Connectivity, preprint, 2001. %H A058931 G.-B. Chae, <a href="/A058931/b058931.txt">Table of n, a(n) for n = 1..47</a> %H A058931 G.-B. Chae, <a href="http://myhome.hanafos.com/~1234chae/myindex.htm">Home page</a> %H A058931 G.-B. Chae, <a href="https://doi.org/10.1016/j.disc.2007.09.034">Counting labeled claw-free cubic graphs by connectivity</a>, Discrete Mathematics 308 (2008) 5136-5143. %H A058931 G.-B. Chae, E. M. Palmer and R. W. Robinson, <a href="/A058929/a058929.pdf">Computing the number of Claw-free Cubic Graphs with given Connectivity</a>, Preprint, 2000. (Annotated scanned copy) %Y A058931 See A058930 for many more terms. %K A058931 nonn %O A058931 1,3 %A A058931 _N. J. A. Sloane_, Jan 12 2001 %E A058931 Added b-file, _N. J. A. Sloane_, Feb 08 2012