cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058936 Decomposition of Stirling's S(n,2) based on associated numeric partitions.

This page as a plain text file.
%I A058936 #12 Sep 06 2022 10:29:09
%S A058936 0,1,3,8,3,30,20,144,90,40,840,504,420,5760,3360,2688,1260,45360,
%T A058936 25920,20160,18144,403200,226800,172800,151200,72576,3991680,2217600,
%U A058936 1663200,1425600,1330560,43545600,23950080,17740800,14968800,13685760,6652800,518918400
%N A058936 Decomposition of Stirling's S(n,2) based on associated numeric partitions.
%C A058936 These values also appear in a wider context when counting elements of finite groups by cycle structure. For example, the alternating group on four symbols has 12 elements; eight associated with the partition 3+1, three associated with 2+2 and the identity associated with 1+1+1+1. The cross-referenced sequences are all associated with similar numeric partitions and "M2" weights.
%D A058936 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 831.
%H A058936 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%F A058936 From _Sean A. Irvine_, Sep 05 2022: (Start)
%F A058936 T(1,1) = 0.
%F A058936 T(n,k) = n! / (k * (n-k)) for 1 <= k < n/2.
%F A058936 T(2n,n) = (2*n)! / (2*n^2).
%F A058936 (End)
%e A058936 Triangle begins:
%e A058936   0;
%e A058936   1;
%e A058936   3;
%e A058936   8, 3;
%e A058936   30, 20;
%e A058936   144, 90, 40;
%e A058936   840, 504, 420;
%e A058936   ...
%Y A058936 Cf. A000012, A000035, A000027, A004526, A022003, A008619, A000217, A007997, A001399, A011765 A008620, A027656, A002620, A000292, A008627.
%K A058936 nonn,tabf
%O A058936 1,3
%A A058936 _Alford Arnold_, Jan 11 2001
%E A058936 More terms from _Sean A. Irvine_, Sep 05 2022