A058944 Coefficients of monic irreducible polynomials over GF(3) listed in lexicographic order.
10, 11, 12, 101, 112, 122, 1021, 1022, 1102, 1112, 1121, 1201, 1211, 1222, 10012, 10022, 10102, 10111, 10121, 10202, 11002, 11021, 11101, 11111, 11122, 11222, 12002, 12011, 12101, 12112, 12121, 12212, 100021, 100022, 100112, 100211
Offset: 1
Examples
The first few are x, x+1, x+2; x^2+1, x^2+x+2, x^2+2x+2; ... Note that x is irreducible but not primitive.
References
- R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, 1983, Table C, pp. 555-557.
Links
- Robert Israel and T. D. Noe, Table of n, a(n) for n = 1..10000 (n = 1..1318 from T. D. Noe)
- R. Church, Tables of irreducible polynomials for the first four prime moduli, Annals Math., 36 (1935), 198-209. Church's table extends through degree 7.
Crossrefs
Programs
-
Maple
N:= 100: # to get the first N terms count:= 0: for d from 1 while count < N do for nn from 0 to 3^d-1 while count < N do L:= convert(nn,base,3); P:= add(L[i]*x^(i-1),i=1..nops(L))+x^d; if Irreduc(P) mod 3 then count:= count+1; A[count]:= add(L[i]*10^(i-1),i=1..nops(L))+10^d; fi od od: seq(A[i],i=1..N); # Robert Israel, Jul 06 2016
-
Mathematica
A058944 = Union[ Reap[ Do[ a = Reverse[ IntegerDigits[n, 3]]; b = {0}; la = Length[a]; k = 1; While[k < la+1, b = Append[ b, a[[k]]*x^(k-1)]; k++]; b = Plus @@ b; c = Factor[ b, Modulus -> 3]; id = IntegerDigits[n, 3]; If[b == c && (id == {1, 0} || id[[-1]] != 0), Sow[ FromDigits[id] ] ], {n, 3, 300}]][[2, 1]]](* Jean-François Alcover, Feb 13 2012, after A058943 *)
Extensions
More terms from David Wasserman, May 23 2002