cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058945 Coefficients of monic irreducible polynomials over GF(5) listed in lexicographic order.

This page as a plain text file.
%I A058945 #16 Sep 29 2020 17:01:52
%S A058945 10,11,12,13,14,102,103,111,112,123,124,133,134,141,142,1011,1014,
%T A058945 1021,1024,1032,1033,1042,1043,1101,1102,1113,1114,1131,1134,1141,
%U A058945 1143,1201,1203,1213,1214,1222,1223,1242,1244,1302,1304,1311,1312,1322,1323,1341
%N A058945 Coefficients of monic irreducible polynomials over GF(5) listed in lexicographic order.
%C A058945 Church's table extends through degree 5.
%D A058945 R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, 1983, Table C, pp. 557-560.
%H A058945 T. D. Noe, <a href="/A058945/b058945.txt">Table of n, a(n) for n=1..63319</a> (through degree 8)
%H A058945 R. Church, <a href="http://www.jstor.org/stable/1968675">Tables of irreducible polynomials for the first four prime moduli</a>, Annals Math., 36 (1935), 198-209.
%t A058945 A058945 = Union[ Reap[ Do[ a = Reverse[ IntegerDigits[n, 5]]; b = {0}; la = Length[a]; k = 1; While[k < la + 1, b = Append[b, a[[k]]*x^(k - 1)]; k++]; b = Plus @@ b; c = Factor[b, Modulus -> 5]; id = IntegerDigits[n, 5]; If[b == c && (id == {1, 0} || id[[-1]] != 0), Sow[ FromDigits[id] ] ], {n, 5, 300}]][[2, 1]]](* _Jean-François Alcover_, Feb 13 2012, after A058943 *)
%Y A058945 Cf. A058943, A058944, A058946, A058947, A058948.
%Y A058945 Irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058943, A058944, A058948, this sequence, A058946. Primitive irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058947, A058949, A058952, A058950, A058951.
%K A058945 nonn,easy,nice
%O A058945 1,1
%A A058945 _N. J. A. Sloane_, Jan 13 2001
%E A058945 More terms from _David Wasserman_, May 23 2002