cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058947 Coefficients of primitive irreducible polynomials over GF(2) listed in lexicographic order.

This page as a plain text file.
%I A058947 #16 Sep 29 2020 17:02:08
%S A058947 11,111,1011,1101,10011,11001,100101,101001,101111,110111,111011,
%T A058947 111101,1000011,1011011,1100001,1100111,1101101,1110011,10000011,
%U A058947 10001001,10001111,10010001,10011101,10100111,10101011
%N A058947 Coefficients of primitive irreducible polynomials over GF(2) listed in lexicographic order.
%C A058947 Church's table extends through degree 11.
%H A058947 T. D. Noe, <a href="/A058947/b058947.txt">Table of n, a(n) for n=1..1110</a> (through degree 13)
%H A058947 R. Church, <a href="http://www.jstor.org/stable/1968675">Tables of irreducible polynomials for the first four prime moduli</a>, Annals Math., 36 (1935), 198-209.
%H A058947 F. Ruskey, <a href="http://www.theory.cs.uvic.ca/~cos/gen/poly.html">Irreducible and Primitive Polynomials over GF(2)</a>
%H A058947 <a href="/index/Ge#GF2X">Index entries for sequences containing GF(2)[X]-polynomials</a>
%e A058947 The first few are x+1; x^2+x+1; x^3+x+1, x^3+x^2+1; ... Note that x is irreducible but not primitive.
%t A058947 car = 2; maxDegree = 13;
%t A058947 okQ[{1, 1}] = True;
%t A058947 okQ[coefs_List] := Module[{P}, P = coefs.x^Range[Length[coefs]-1, 0, -1]; coefs[[1]] == 1 && IrreduciblePolynomialQ[P, Modulus -> car] && PrimitivePolynomialQ[P, car]];
%t A058947 FromDigits /@ Select[Table[IntegerDigits[k, car], {k, car+1, car^(maxDegree + 1)}], okQ] (* _Jean-François Alcover_, Sep 09 2019 *)
%Y A058947 Cf. A000020, A001037, A011260, A058943, A058944, A058945, A058946, A058948.
%Y A058947 Irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058943, A058944, A058948, A058945, A058946.
%Y A058947 Primitive irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058947, A058949, A058952, A058950, A058951.
%Y A058947 a(n) = A007088(A091250(n)).
%K A058947 nonn,easy,nice
%O A058947 1,1
%A A058947 _N. J. A. Sloane_, Jan 13 2001