This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A058947 #16 Sep 29 2020 17:02:08 %S A058947 11,111,1011,1101,10011,11001,100101,101001,101111,110111,111011, %T A058947 111101,1000011,1011011,1100001,1100111,1101101,1110011,10000011, %U A058947 10001001,10001111,10010001,10011101,10100111,10101011 %N A058947 Coefficients of primitive irreducible polynomials over GF(2) listed in lexicographic order. %C A058947 Church's table extends through degree 11. %H A058947 T. D. Noe, <a href="/A058947/b058947.txt">Table of n, a(n) for n=1..1110</a> (through degree 13) %H A058947 R. Church, <a href="http://www.jstor.org/stable/1968675">Tables of irreducible polynomials for the first four prime moduli</a>, Annals Math., 36 (1935), 198-209. %H A058947 F. Ruskey, <a href="http://www.theory.cs.uvic.ca/~cos/gen/poly.html">Irreducible and Primitive Polynomials over GF(2)</a> %H A058947 <a href="/index/Ge#GF2X">Index entries for sequences containing GF(2)[X]-polynomials</a> %e A058947 The first few are x+1; x^2+x+1; x^3+x+1, x^3+x^2+1; ... Note that x is irreducible but not primitive. %t A058947 car = 2; maxDegree = 13; %t A058947 okQ[{1, 1}] = True; %t A058947 okQ[coefs_List] := Module[{P}, P = coefs.x^Range[Length[coefs]-1, 0, -1]; coefs[[1]] == 1 && IrreduciblePolynomialQ[P, Modulus -> car] && PrimitivePolynomialQ[P, car]]; %t A058947 FromDigits /@ Select[Table[IntegerDigits[k, car], {k, car+1, car^(maxDegree + 1)}], okQ] (* _Jean-François Alcover_, Sep 09 2019 *) %Y A058947 Cf. A000020, A001037, A011260, A058943, A058944, A058945, A058946, A058948. %Y A058947 Irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058943, A058944, A058948, A058945, A058946. %Y A058947 Primitive irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058947, A058949, A058952, A058950, A058951. %Y A058947 a(n) = A007088(A091250(n)). %K A058947 nonn,easy,nice %O A058947 1,1 %A A058947 _N. J. A. Sloane_, Jan 13 2001