This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A058950 #12 Sep 10 2019 03:18:14 %S A058950 12,13,112,123,133,142,1032,1033,1042,1043,1102,1113,1143,1203,1213, %T A058950 1222,1223,1242,1302,1312,1322,1323,1343,1403,1412,1442,10122,10123, %U A058950 10132,10133,10412,10413,10442,10443,11013,11023,11032,11042,11113 %N A058950 Coefficients of monic primitive irreducible polynomials over GF(5) listed in lexicographic order. %H A058950 T. D. Noe, <a href="/A058950/b058950.txt">Table of n, a(n) for n=1..354</a> (through degree 5) %H A058950 R. Church, <a href="http://www.jstor.org/stable/1968675">Tables of irreducible polynomials for the first four prime moduli</a>, Annals Math., 36 (1935), 198-209. Church's table extends through degree 5. %t A058950 car = 5; maxDegree = 5; %t A058950 okQ[coefs_List] := Module[{P}, P = coefs.x^Range[Length[coefs] - 1, 0, -1]; coefs[[1]] == 1 && IrreduciblePolynomialQ[P, Modulus -> car] && PrimitivePolynomialQ[P, car]]; %t A058950 FromDigits /@ Select[Table[IntegerDigits[k, car], {k, car+1, car^(maxDegree + 1)}], okQ] (* _Jean-François Alcover_, Sep 10 2019 *) %Y A058950 Cf. A058945. %Y A058950 Irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058943, A058944, A058948, A058945, A058946. Primitive irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058947, A058949, A058952, A058950, A058951. %K A058950 nonn,easy,nice %O A058950 1,1 %A A058950 _N. J. A. Sloane_, Jan 13 2001 %E A058950 More terms from Jean Gaumont (jeangaum87(AT)yahoo.com), Apr 16 2006