This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A058951 #12 Sep 10 2019 03:18:22 %S A058951 12,14,113,123,125,135,145,153,155,163,1032,1052,1062,1112,1124,1152, %T A058951 1154,1214,1242,1262,1264,1304,1314,1322,1334,1352,1354,1362,1422, %U A058951 1432,1434,1444,1504,1524,1532,1534,1542,1552,1564,1604,1612,1632,1644,1654 %N A058951 Coefficients of monic primitive irreducible polynomials over GF(7) listed in lexicographic order. %H A058951 T. D. Noe, <a href="/A058951/b058951.txt">Table of n, a(n) for n=1..206</a> (through degree 4) %H A058951 R. Church, <a href="http://www.jstor.org/stable/1968675">Tables of irreducible polynomials for the first four prime moduli</a>, Annals Math., 36 (1935), 198-209. Church's table extends through degree 3. %t A058951 car = 7; maxDegree = 4; %t A058951 okQ[coefs_List] := Module[{P}, P = coefs.x^Range[Length[coefs] - 1, 0, -1]; coefs[[1]] == 1 && IrreduciblePolynomialQ[P, Modulus -> car] && PrimitivePolynomialQ[P, car]]; %t A058951 FromDigits /@ Select[Table[IntegerDigits[k, car], {k, car+1, car^(maxDegree + 1)}], okQ] (* _Jean-François Alcover_, Sep 10 2019 *) %Y A058951 Cf. A058946. %Y A058951 Irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058943, A058944, A058948, A058945, A058946. Primitive irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058947, A058949, A058952, A058950, A058951. %K A058951 nonn,easy,nice %O A058951 1,1 %A A058951 _N. J. A. Sloane_, Jan 13 2001 %E A058951 More terms from Jean Gaumont (jeangaum87(AT)yahoo.com), Apr 16 2006