This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A058965 #30 Dec 18 2024 15:05:15 %S A058965 0,3,1,1,3,1,1,1,1,3,1,3,12,1,8,8,1,7,6,1,5,2,1,1,4,1,3,2,36,1,10,6,1, %T A058965 2 %N A058965 Continued fraction expansion of series-parallel constant. %D A058965 J. W. Moon, Some enumerative results on series-parallel networks, Annals Discrete Math., 33 (1987), 199-226. %D A058965 J. Riordan and C. E. Shannon, The number of two-terminal series-parallel networks, J. Math. Phys., 21 (1942), 83-93. Reprinted in Claude Elwood Shannon: Collected Papers, edited by N. J. A. Sloane and A. D. Wyner, IEEE Press, NY, 1993, pp. 560-570. %H A058965 Steven R. Finch, <a href="/A000084/a000084_2.pdf">Series-parallel networks</a>, July 7, 2003. [Cached copy, with permission of the author] %H A058965 O. Golinelli, <a href="http://arXiv.org/abs/cond-mat/9707023">Asymptotic behavior of two-terminal series-parallel networks</a>, arXiv:cond-mat/9707023 [cond-mat.stat-mech], 1997. %F A058965 This number, c, is defined by Product_{n=1..inf} (1-c^n)^(-A000669[n]) = 2. %e A058965 Constant is 0.2808326669842003553932... %Y A058965 See A058964 for decimal expansion. Cf. A000084, A000669. %K A058965 nonn,cofr,more %O A058965 0,2 %A A058965 _N. J. A. Sloane_, E. M. Rains, Jan 14 2001