cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059014 Numbers that have an even number of 0's and an odd number of 1's in binary expansion.

This page as a plain text file.
%I A059014 #19 Apr 11 2021 04:52:15
%S A059014 1,4,7,16,19,21,22,25,26,28,31,64,67,69,70,73,74,76,79,81,82,84,87,88,
%T A059014 91,93,94,97,98,100,103,104,107,109,110,112,115,117,118,121,122,124,
%U A059014 127,256,259,261,262,265,266,268,271,273,274,276,279,280,283,285,286
%N A059014 Numbers that have an even number of 0's and an odd number of 1's in binary expansion.
%H A059014 Indranil Ghosh, <a href="/A059014/b059014.txt">Table of n, a(n) for n = 1..50000</a> (terms 1..1000 from Harvey P. Dale)
%e A059014 21 is in the sequence because 21 = 10101_2. '10101' has two 0's and three 1's. - _Indranil Ghosh_, Feb 06 2017
%t A059014 en0on1Q[n_]:=Module[{idn2=IntegerDigits[n,2]},EvenQ[Count[idn2,0]] && OddQ[Count[idn2,1]]]; Select[Range[300],en0on1Q] (* _Harvey P. Dale_, Nov 08 2013 *)
%o A059014 (PARI) is(n)=hammingweight(n)%2 && hammingweight(bitneg(n, #binary(n)))%2==0 \\ _Charles R Greathouse IV_, Mar 26 2013
%o A059014 (Python)
%o A059014 i=1
%o A059014 j=1
%o A059014 while j<=100:
%o A059014     if not bin(i)[2:].count("0")%2 and bin(i)[2:].count("1")%2:
%o A059014         print(str(j)+" "+str(i))
%o A059014         j+=1
%o A059014     i+=1 # _Indranil Ghosh_, Feb 06 2017
%Y A059014 Cf. A000069, A001969, A059009-A059013.
%K A059014 nonn,easy
%O A059014 1,2
%A A059014 _Patrick De Geest_, Dec 15 2000