This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059014 #19 Apr 11 2021 04:52:15 %S A059014 1,4,7,16,19,21,22,25,26,28,31,64,67,69,70,73,74,76,79,81,82,84,87,88, %T A059014 91,93,94,97,98,100,103,104,107,109,110,112,115,117,118,121,122,124, %U A059014 127,256,259,261,262,265,266,268,271,273,274,276,279,280,283,285,286 %N A059014 Numbers that have an even number of 0's and an odd number of 1's in binary expansion. %H A059014 Indranil Ghosh, <a href="/A059014/b059014.txt">Table of n, a(n) for n = 1..50000</a> (terms 1..1000 from Harvey P. Dale) %e A059014 21 is in the sequence because 21 = 10101_2. '10101' has two 0's and three 1's. - _Indranil Ghosh_, Feb 06 2017 %t A059014 en0on1Q[n_]:=Module[{idn2=IntegerDigits[n,2]},EvenQ[Count[idn2,0]] && OddQ[Count[idn2,1]]]; Select[Range[300],en0on1Q] (* _Harvey P. Dale_, Nov 08 2013 *) %o A059014 (PARI) is(n)=hammingweight(n)%2 && hammingweight(bitneg(n, #binary(n)))%2==0 \\ _Charles R Greathouse IV_, Mar 26 2013 %o A059014 (Python) %o A059014 i=1 %o A059014 j=1 %o A059014 while j<=100: %o A059014 if not bin(i)[2:].count("0")%2 and bin(i)[2:].count("1")%2: %o A059014 print(str(j)+" "+str(i)) %o A059014 j+=1 %o A059014 i+=1 # _Indranil Ghosh_, Feb 06 2017 %Y A059014 Cf. A000069, A001969, A059009-A059013. %K A059014 nonn,easy %O A059014 1,2 %A A059014 _Patrick De Geest_, Dec 15 2000