This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059023 #28 Apr 15 2022 08:05:54 %S A059023 1,1,1,1,1,35,1,126,1,336,1,792,1,1749,5775,1,3718,45045,1,7722, %T A059023 231231,1,15808,981981,1,32071,3741738,2627625,1,64702,13307294, %U A059023 35735700,1,130084,45172842,300179880,1,260984,148417854,2002016016,1,522937,476330361 %N A059023 Triangle of Stirling numbers of order 4. %C A059023 The number of partitions of the set N, |N|=n, into k blocks, all of cardinality greater than or equal to 4. This is the 4-associated Stirling number of the second kind. %C A059023 This is entered as a triangular array. The entries S_4(n,k) are zero for 4k>n, so these values are omitted. Initial entry in sequence is S_4(4,1). %C A059023 Rows are of lengths 1,1,1,1,2,2,2,2,3,3,3,3,... %D A059023 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 222. %D A059023 J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 76. %H A059023 Alois P. Heinz, <a href="/A059023/b059023.txt">Rows n = 4..300, flattened</a> %H A059023 A. E. Fekete, <a href="http://www.jstor.org/stable/2974533">Apropos two notes on notation</a>, Amer. Math. Monthly, 101 (1994), 771-778. %F A059023 S_r(n+1, k) = k*S_r(n, k) + binomial(n, r-1)*S_r(n-r+1, k-1); for this sequence, r=4. %F A059023 G.f.: Sum_{n>=0, k>=0} S_r(n,k)*u^k*t^n/n! = exp(u(e^t-sum(t^i/i!, i=0..r-1))). %F A059023 T(n,k) = Sum_{j=0..min(n/3,k)} (-1)^j*n!/(6^j*j!*(n-3j)!)*S_3(n-3j,k-j), where S_3 are the 3-associated Stirling numbers of the second kind A059022. - _Fabián Pereyra_, Feb 21 2022 %e A059023 There are 35 ways of partitioning a set N of cardinality 8 into 2 blocks each of cardinality at least 4, so S_4(8,2) = 35. %p A059023 b:= proc(n) option remember; `if`(n=0, 1, add( %p A059023 expand(x*b(n-j))*binomial(n-1, j-1), j=4..n)) %p A059023 end: %p A059023 T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)): %p A059023 seq(T(n), n=4..20); # _Alois P. Heinz_, Feb 21 2022 %p A059023 # alternative %p A059023 A059023 := proc(n, k) %p A059023 option remember; %p A059023 if n<4 then %p A059023 0; %p A059023 elif n < 8 and k=1 then %p A059023 1 ; %p A059023 else %p A059023 k*procname(n-1, k)+binomial(n-1, 3)*procname(n-4, k-1) ; %p A059023 end if; %p A059023 end proc: # _R. J. Mathar_, Apr 15 2022 %t A059023 s4[n_, k_] := k*s4[n-1, k] + Binomial[n-1, 3]*s4[n-4, k-1]; s4[n_, k_] /; 4 k > n = 0; s4[_, k_ /; k <= 0] = 0; s4[0, 0] = 1; %t A059023 Flatten[Table[s4[n, k], {n, 4, 20}, {k, 1, Floor[n/4]}]][[1 ;; 42]] (* _Jean-François Alcover_, Jun 16 2011 *) %Y A059023 Row sums give A057837. %Y A059023 Cf. A008299, A059022, A059024, A059025. %K A059023 nonn,tabf,nice %O A059023 4,6 %A A059023 Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000