A059045 Square array T(n,k) read by antidiagonals where T(0,k) = 0 and T(n,k) = 1 + 2k + 3k^2 + ... + n*k^(n-1).
0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 5, 1, 0, 1, 10, 17, 7, 1, 0, 1, 15, 49, 34, 9, 1, 0, 1, 21, 129, 142, 57, 11, 1, 0, 1, 28, 321, 547, 313, 86, 13, 1, 0, 1, 36, 769, 2005, 1593, 586, 121, 15, 1, 0, 1, 45, 1793, 7108, 7737, 3711, 985, 162, 17, 1, 0, 1, 55, 4097, 24604, 36409
Offset: 0
Examples
0, 0, 0, 0, 0, 0, 0, 0, 0, ... 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 3, 5, 7, 9, 11, 13, 15, 17, ... 1, 6, 17, 34, 57, 86, 121, 162, 209, ... 1, 10, 49, 142, 313, 586, 985, 1534, 2257, ... 1, 15, 129, 547, 1593, 3711, 7465, 13539, 22737, ... 1, 21, 321, 2005, 7737, 22461, 54121, 114381, 219345, ... 1, 28, 769, 7108, 36409, 131836, 380713, 937924, 2054353, ...
Crossrefs
Programs
-
Maple
A059045 := proc(n,k) if k = 1 then n*(n+1) /2 ; else (1+n*k^(n+1)-k^n*(n+1))/(k-1)^2 ; end if; end proc: # R. J. Mathar, Mar 29 2013
Formula
T(n,k) = n*k^(n-1)+T(n-1, k) = (n*k^(n+1)-(n+1)*k^n+1)/(k-1)^2.