cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059045 Square array T(n,k) read by antidiagonals where T(0,k) = 0 and T(n,k) = 1 + 2k + 3k^2 + ... + n*k^(n-1).

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 5, 1, 0, 1, 10, 17, 7, 1, 0, 1, 15, 49, 34, 9, 1, 0, 1, 21, 129, 142, 57, 11, 1, 0, 1, 28, 321, 547, 313, 86, 13, 1, 0, 1, 36, 769, 2005, 1593, 586, 121, 15, 1, 0, 1, 45, 1793, 7108, 7737, 3711, 985, 162, 17, 1, 0, 1, 55, 4097, 24604, 36409
Offset: 0

Views

Author

Henry Bottomley, Dec 18 2000

Keywords

Examples

			   0,   0,   0,    0,     0,      0,      0,      0,       0, ...
   1,   1,   1,    1,     1,      1,      1,      1,       1, ...
   1,   3,   5,    7,     9,     11,     13,     15,      17, ...
   1,   6,  17,   34,    57,     86,    121,    162,     209, ...
   1,  10,  49,  142,   313,    586,    985,   1534,    2257, ...
   1,  15, 129,  547,  1593,   3711,   7465,  13539,   22737, ...
   1,  21, 321, 2005,  7737,  22461,  54121, 114381,  219345, ...
   1,  28, 769, 7108, 36409, 131836, 380713, 937924, 2054353, ...
		

Crossrefs

Programs

  • Maple
    A059045 := proc(n,k)
        if k = 1 then
            n*(n+1) /2 ;
        else
            (1+n*k^(n+1)-k^n*(n+1))/(k-1)^2 ;
        end if;
    end proc: # R. J. Mathar, Mar 29 2013

Formula

T(n,k) = n*k^(n-1)+T(n-1, k) = (n*k^(n+1)-(n+1)*k^n+1)/(k-1)^2.