A059057 Penrice Christmas gift numbers, Card-matching numbers (Dinner-Diner matching numbers).
1, 0, 0, 2, 4, 0, 16, 0, 4, 80, 192, 216, 128, 96, 0, 8, 4752, 10752, 11776, 7680, 3936, 1024, 384, 0, 16, 440192, 975360, 1035680, 696320, 329600, 114176, 31040, 5120, 1280, 0, 32, 59245120, 129054720, 135477504, 90798080
Offset: 0
Examples
There are 16 ways of matching exactly 2 cards when there are 2 different kinds of cards, 2 of each in each of the two decks so T(2,2)=16.
References
- F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 174-178.
- R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997, p. 71.
Links
- F. F. Knudsen and I. Skau, On the Asymptotic Solution of a Card-Matching Problem, Mathematics Magazine 69 (1996), 190-197.
- Barbara H. Margolius, Dinner-Diner Matching Probabilities
- B. H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), 107-118.
- S. G. Penrice, Derangements, permanents and Christmas presents, The American Mathematical Monthly 98(1991), 617-620.
- Index entries for sequences related to card matching
Programs
-
Maple
p := (x,k)->k!^2*sum(x^j/((k-j)!^2*j!),j=0..k); R := (x,n,k)->p(x,k)^n; f := (t,n,k)->sum(coeff(R(x,n,k),x,j)*(t-1)^j*(n*k-j)!,j=0..n*k); for n from 0 to 6 do seq(coeff(f(t,n,2),t,m),m=0..2*n); od;
-
Mathematica
p[x_, k_] := k!^2*Sum[x^j/((k-j)!^2*j!), {j, 0, k}]; r[x_, n_, k_] := p[x, k]^n; f[t_, n_, k_] := Sum[ Coefficient[r[x, n, k], x, j]*(t-1)^j*(n*k-j)!, {j, 0, n*k}]; Flatten[ Table[ Coefficient[ f[t, n, 2], t, m], {n, 0, 6}, {m, 0, 2 n}]](* Jean-François Alcover, Nov 28 2011, translated from Maple *)
Formula
G.f.: sum(coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)!, j=0..n*k) where n is the number of kinds of cards, k is the number of cards of each kind (here k is 2) and R(x, n, k) is the rook polynomial given by R(x, n, k)=(k!^2*sum(x^j/((k-j)!^2*j!))^n (see Stanley or Riordan). coeff(R(x, n, k), x, j) indicates the j-th coefficient on x of the rook polynomial.
Comments