cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059063 Card-matching numbers (Dinner-Diner matching numbers).

This page as a plain text file.
%I A059063 #21 Apr 12 2023 10:52:51
%S A059063 1,0,0,0,0,0,120,14400,0,360000,0,1440000,0,1440000,0,360000,0,14400,
%T A059063 3891456000,26179200000,83980800000,171676800000,249091200000,
%U A059063 270869184000,226368000000,150465600000,77760000000
%N A059063 Card-matching numbers (Dinner-Diner matching numbers).
%C A059063 This is a triangle of card matching numbers. Two decks each have n kinds of cards, 5 of each kind. The first deck is laid out in order. The second deck is shuffled and laid out next to the first. A match occurs if a card from the second deck is next to a card of the same kind from the first deck. Triangle T(n,k) is the number of ways of achieving exactly k matches (k=0..5n). The probability of exactly k matches is T(n,k)/(5n)!.
%C A059063 Rows are of length 1,6,11,16,...
%D A059063 F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12.
%D A059063 J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 174-178.
%D A059063 R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997, p. 71.
%H A059063 F. F. Knudsen and I. Skau, <a href="http://www.jstor.org/stable/2691467">On the Asymptotic Solution of a Card-Matching Problem</a>, Mathematics Magazine 69 (1996), 190-197.
%H A059063 Barbara H. Margolius, <a href="https://web.archive.org/web/20201128023513/http://academic.csuohio.edu/bmargolius/homepage/dinner/dinner/cardentry.htm">Dinner-Diner Matching Probabilities</a>
%H A059063 B. H. Margolius, <a href="http://www.jstor.org/stable/3219303">The Dinner-Diner Matching Problem</a>, Mathematics Magazine, 76 (2003), 107-118.
%H A059063 S. G. Penrice, <a href="http://www.jstor.org/stable/2324927">Derangements, permanents and Christmas presents</a>, The American Mathematical Monthly 98(1991), 617-620.
%H A059063 <a href="/index/Ca#cardmatch">Index entries for sequences related to card matching</a>
%F A059063 G.f.: sum(coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)!, j=0..n*k) where n is the number of kinds of cards, k is the number of cards of each kind (here k is 5) and R(x, n, k) is the rook polynomial given by R(x, n, k)=(k!^2*sum(x^j/((k-j)!^2*j!))^n (see Stanley or Riordan). coeff(R(x, n, k), x, j) indicates the coefficient x^j of the rook polynomial.
%e A059063 There are 360000 ways of matching exactly 2 cards when there are 2 different kinds of cards, 5 of each in each of the two decks so T(2,2)=360000.
%p A059063 p := (x,k)->k!^2*sum(x^j/((k-j)!^2*j!),j=0..k); R := (x,n,k)->p(x,k)^n; f := (t,n,k)->sum(coeff(R(x,n,k),x,j)*(t-1)^j*(n*k-j)!,j=0..n*k);
%p A059063 for n from 0 to 4 do seq(coeff(f(t,n,5),t,m),m=0..5*n); od;
%t A059063 p[x_, k_] := k!^2*Sum[x^j/((k-j)!^2*j!), {j, 0, k}]; r[x_, n_, k_] := p[x, k]^n; f[t_, n_, k_] := Sum[Coefficient[r[x, n, k], x, j]*(t-1)^j*(n*k-j)!, {j, 0, n*k}]; k = 5; Table[ Table[ Coefficient[f[t, n, k], t, m], {m, 0, k*n}], {n, 0, 4}] // Flatten (* _Jean-François Alcover_, Oct 21 2013, after Maple *)
%Y A059063 Cf. A008290, A059056-A059071.
%K A059063 nonn,tabf,nice
%O A059063 0,7
%A A059063 Barbara Haas Margolius (margolius(AT)math.csuohio.edu)