A059067 Card-matching numbers (Dinner-Diner matching numbers).
1, 2, 3, 0, 1, 80, 192, 216, 128, 96, 0, 8, 12096, 46656, 81648, 93960, 69984, 40824, 11664, 5832, 0, 216, 4783104, 25214976, 62705664, 98648064, 109859328, 87588864, 54411264, 23887872, 9455616, 1769472, 663552, 0
Offset: 0
Examples
There are 216 ways of matching exactly 2 cards when there are 2 cards of each kind and 3 kinds of card so T(2,2)=216.
References
- F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 174-178.
- R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997, p. 71.
Links
- F. F. Knudsen and I. Skau, On the Asymptotic Solution of a Card-Matching Problem, Mathematics Magazine 69 (1996), 190-197.
- Barbara H. Margolius, Dinner-Diner Matching Probabilities
- B. H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), 107-118.
- S. G. Penrice, Derangements, permanents and Christmas presents, The American Mathematical Monthly 98(1991), 617-620.
- Index entries for sequences related to card matching
Programs
-
Maple
p := (x,k)->k!^2*sum(x^j/((k-j)!^2*j!),j=0..k); R := (x,n,k)->p(x,k)^n; f := (t,n,k)->sum(coeff(R(x,n,k),x,j)*(t-1)^j*(n*k-j)!,j=0..n*k); for n from 0 to 5 do seq(coeff(f(t,3,n),t,m),m=0..3*n); od;
-
Mathematica
p[x_, k_] := k!^2*Sum[x^j/((k - j)!^2*j!), {j, 0, k}]; r[x_, n_, k_] := p[x, k]^n; f[t_, n_, k_] := Sum[Coefficient[r[x, n, k], x, j]*(t - 1)^j*(n*k - j)!, {j, 0, n*k}]; Table[ Coefficient[f[t, 3, n], t, m], {n, 0, 5}, {m, 0, 3*n}] // Flatten (* Jean-François Alcover, Oct 21 2013, after Maple *)
Formula
G.f.: sum(coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)!, j=0..n*k) where n is the number of kinds of cards (3 in this case), k is the number of cards of each kind and R(x, n, k) is the rook polynomial given by R(x, n, k)=(k!^2*sum(x^j/((k-j)!^2*j!))^n (see Stanley or Riordan). coeff(R(x, n, k), x, j) indicates the coefficient for x^j of the rook polynomial.
Comments