This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059071 #18 Feb 04 2017 01:02:44 %S A059071 1,44,45,20,10,0,1,440192,975360,1035680,696320,329600,114176,31040, %T A059071 5120,1280,0,32,52097831424,179811290880,298276007040,315423836640, %U A059071 237742646400,135296008128,60059024640 %N A059071 Card-matching numbers (Dinner-Diner matching numbers) for 5 kinds of cards. %C A059071 This is a triangle of card matching numbers. Two decks each have 5 kinds of cards, n of each kind. The first deck is laid out in order. The second deck is shuffled and laid out next to the first. A match occurs if a card from the second deck is next to a card of the same kind from the first deck. Triangle T(n,k) is the number of ways of achieving exactly k matches (k=0..5n). The probability of exactly k matches is T(n,k)/(5n)!. %C A059071 Rows are of length 1,6,11,16,... = 5n+1 = A016861(n). - _M. F. Hasler_, Sep 20 2015 %D A059071 F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12. %D A059071 J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 174-178. %D A059071 R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997, p. 71. %H A059071 F. F. Knudsen and I. Skau, <a href="http://www.jstor.org/stable/2691467">On the Asymptotic Solution of a Card-Matching Problem</a>, Mathematics Magazine 69 (1996), 190-197. %H A059071 B. H. Margolius, <a href="http://www.jstor.org/stable/3219303">The Dinner-Diner Matching Problem</a>, Mathematics Magazine, 76 (2003), 107-118. %H A059071 Barbara H. Margolius, <a href="http://academic.csuohio.edu/bmargolius/homepage/dinner/dinner/cardentry.htm">Dinner-Diner Matching Probabilities</a> %H A059071 S. G. Penrice, <a href="http://www.jstor.org/stable/2324927">Derangements, permanents and Christmas presents</a>, The American Mathematical Monthly 98(1991), 617-620. %H A059071 <a href="/index/Ca#cardmatch">Index entries for sequences related to card matching</a> %F A059071 G.f.: sum(coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)!, j=0..n*k) where n is the number of kinds of cards (5 in this case), k is the number of cards of each kind and R(x, n, k) is the rook polynomial given by R(x, n, k)=(k!^2*sum(x^j/((k-j)!^2*j!))^n (see Stanley or Riordan). coeff(R(x, n, k), x, j) indicates the coefficient for x^j of the rook polynomial. %e A059071 There are 1,035,680 ways of matching exactly 2 cards when there are 2 cards of each kind and 5 kinds of card so T(2,2)=1,035,680. %p A059071 p := (x,k)->k!^2*sum(x^j/((k-j)!^2*j!),j=0..k); R := (x,n,k)->p(x,k)^n; f := (t,n,k)->sum(coeff(R(x,n,k),x,j)*(t-1)^j*(n*k-j)!,j=0..n*k); %p A059071 for n from 0 to 3 do seq(coeff(f(t,5,n),t,m),m=0..5*n); od; %t A059071 p[x_, k_] := k!^2*Sum[ x^j/((k-j)!^2*j!), {j, 0, k}]; r[x_, n_, k_] := p[x, k]^n; f[t_, n_, k_] := Sum[ Coefficient[ r[x, n, k], x, j]*(t-1)^j*(n*k-j)!, {j, 0, n*k}]; Table[ Coefficient[ f[t, 5, n], t, m], {n, 0, 3}, {m, 0, 5*n}] // Flatten (* _Jean-François Alcover_, Mar 04 2013, translated from Maple *) %Y A059071 Cf. A008290, A059056-A059071. %K A059071 nonn,tabf,nice %O A059071 0,2 %A A059071 Barbara Haas Margolius (margolius(AT)math.csuohio.edu) %E A059071 Edited by _M. F. Hasler_, Sep 20 2015