This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059088 #12 Jul 02 2025 16:02:00 %S A059088 1,2,6,108,32076,2147160096,9223372004645279520, %T A059088 170141183460469231537996491317719562880, %U A059088 57896044618658097711785492504343953921871039195927143534211473291570199939840 %N A059088 Number of labeled n-node T_0-hypergraphs without multiple hyperedges (empty hyperedge excluded). %C A059088 A hypergraph is a T_0 hypergraph if for every two distinct nodes there exists a hyperedge containing one but not the other node. %H A059088 <a href="/A059087/a059087.pdf">Illustration of initial terms of A059087, A059088</a> %F A059088 Row sums of A059087. %F A059088 a(n) = A059085(n)/2. %F A059088 a(n) = Sum_{k=0..n} stirling1(n, k)*2^((2^k)-1). %e A059088 There are 108 labeled 3-node T_0-hypergraphs without multiple hyperedges (empty hyperedge excluded): 12 with 2 hyperedges, 32 with 3 hyperedges,35 with 4 hyperedges, 21 with 5 hyperedges, 7 with 6 hyperedges and 1 with 7 hyperedges. %p A059088 with(combinat): for n from 0 to 15 do printf(`%d,`,(1/2)*sum(stirling1(n,k)*2^(2^k), k= 0..n)) od: %t A059088 Table[Sum[StirlingS1[n, k]*2^((2^k)-1), {k,0,n}], {n,0,10}] (* _G. C. Greubel_, Oct 06 2017 *) %Y A059088 Cf. A059084-A059087, A059089. %K A059088 easy,nonn %O A059088 0,2 %A A059088 Goran Kilibarda, _Vladeta Jovovic_, Dec 27 2000 %E A059088 More terms from _James Sellers_, Jan 24 2001