This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059098 #32 Dec 06 2023 14:18:46 %S A059098 1,1,1,2,3,2,5,10,12,6,15,37,62,60,24,52,151,320,450,360,120,203,674, %T A059098 1712,3120,3720,2520,720,877,3263,9604,21336,33600,34440,20160,5040, %U A059098 4140,17007,56674,147756,287784,394800,352800,181440,40320,21147,94828 %N A059098 Triangle read by rows. T(n, k) = Sum_{i=0..n} Stirling2(n, i)*Product_{j=1..k} (i - j + 1) for 0 <= k <= n. %C A059098 The transpose of this lower unitriangular array is the U factor in the LU decomposition of the Hankel matrix (Bell(i+j-2))_i,j >= 1, where Bell(n) = A000110(n). The L factor is A049020 (see Chamberland, p. 1672). - _Peter Bala_, Oct 15 2023 %H A059098 Marc Chamberland, <a href="https://doi.org/10.1016/j.laa.2011.08.030">Factored matrices can generate combinatorial identities</a>, Linear Algebra and its Applications, Volume 438, Issue 4, 2013, pp. 1667-1677. %F A059098 E.g.f. for T(n, k): (exp(x)-1)^k*(exp(exp(x)-1)). %F A059098 n-th row is M^n*[1,0,0,0,...], where M is a tridiagonal matrix with all 1's in the superdiagonal, (1,2,3,...) in the main and subdiagonals; and the rest zeros. - _Gary W. Adamson_, Jun 23 2011 %F A059098 T(n, k) = k!*A049020(n, k). - _R. J. Mathar_, May 17 2016 %F A059098 T(n, k) = Sum_{j=0..k} (-1)^(k-j)*A046716(k, k-j)*Bell(n + j). - _Peter Luschny_, Dec 06 2023 %e A059098 Triangle begins: %e A059098 [0] [ 1] %e A059098 [1] [ 1, 1] %e A059098 [2] [ 2, 3, 2] %e A059098 [3] [ 5, 10, 12, 6] %e A059098 [4] [15, 37, 62, 60, 24] %e A059098 [5] [52, 151, 320, 450, 360, 120] %e A059098 [6] [203, 674, 1712, 3120, 3720, 2520, 720] %e A059098 ...; %e A059098 E.g.f. for T(n, 2) = (exp(x)-1)^2*(exp(exp(x)-1)) = x^2 + 2*x^3 + 31/12*x^4 + 8/3*x^5 + 107/45*x^6 + 343/180*x^7 + 28337/20160*x^8 + 349/360*x^9 + ...; %e A059098 E.g.f. for T(n, 3) = (exp(x)-1)^3*(exp(exp(x)-1)) = x^3 + 5/2*x^4 + 15/4*x^5 + 13/3*x^6 + 127/30*x^7 + 1759/480*x^8 + 34961/12096*x^9 + ... %p A059098 T := proc(n, k) option remember; `if`(k < 0 or k > n, 0, %p A059098 `if`(n = 0, 1, k*T(n-1, k-1) + (k+1)*T(n-1, k) + T(n-1, k+1))) %p A059098 end: %p A059098 seq(print(seq(T(n, k), k = 0..n)), n = 0..15); # _Peter Bala_, Oct 15 2023 %Y A059098 Cf. A000110(n) = T(n,0), A005493(n) = T(n,1), A059099 (row sums). %Y A059098 Cf. A049020, A001861, A046716. %K A059098 easy,nonn,tabl %O A059098 0,4 %A A059098 _Vladeta Jovovic_, Jan 02 2001