This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059101 #18 Sep 13 2024 20:16:38 %S A059101 1,3,7,8,9,10,11,15,16,17,97,100,103,117,976,32307,32760,32787,60508, %T A059101 60601,60663,187154,230084,1120375,1146529,2211732,4497058,1434927965, %U A059101 1434935064,1434935232,1434935281,1471575921,1471636101,1490844937,1491643951,1498931686 %N A059101 Number of terms of the fractional part of A001203 for which the geometric mean produces increasingly better approximations to Khinchin's constant. %C A059101 Next term > 3*10^10. - _Hans Havermann_, Jul 29 2024 %C A059101 The geometric mean of 1498931686 terms is Khinchin + 1.00240496*10^-13. %H A059101 Hans Havermann, <a href="http://chesswanks.com/pxp/cfpi.html">Simple Continued Fraction for Pi</a> %F A059101 p = Rest[{A001203}]; q = N[1, 100]; r = p[[1]] + 1; t = {}; Do[q = q*p[[i]]; g = q^(1/i) - Khinchin; If[Abs[g] < r, r = Abs[g]; t = Append[t, i]], {i, 1, Length[p]}]; t %e A059101 The geometric mean of 17 terms (Khinchin + 0.00752006) is not bettered until we calculate the geometric mean of 97 terms (Khinchin - 0.00326655). %Y A059101 Cf. A001203, A048613. %K A059101 nonn %O A059101 1,2 %A A059101 _Hans Havermann_, Feb 13 2001 %E A059101 a(28)-a(36) from _Hans Havermann_, Dec 27 2012