cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059101 Number of terms of the fractional part of A001203 for which the geometric mean produces increasingly better approximations to Khinchin's constant.

This page as a plain text file.
%I A059101 #18 Sep 13 2024 20:16:38
%S A059101 1,3,7,8,9,10,11,15,16,17,97,100,103,117,976,32307,32760,32787,60508,
%T A059101 60601,60663,187154,230084,1120375,1146529,2211732,4497058,1434927965,
%U A059101 1434935064,1434935232,1434935281,1471575921,1471636101,1490844937,1491643951,1498931686
%N A059101 Number of terms of the fractional part of A001203 for which the geometric mean produces increasingly better approximations to Khinchin's constant.
%C A059101 Next term > 3*10^10. - _Hans Havermann_, Jul 29 2024
%C A059101 The geometric mean of 1498931686 terms is Khinchin + 1.00240496*10^-13.
%H A059101 Hans Havermann, <a href="http://chesswanks.com/pxp/cfpi.html">Simple Continued Fraction for Pi</a>
%F A059101 p = Rest[{A001203}]; q = N[1, 100]; r = p[[1]] + 1; t = {}; Do[q = q*p[[i]]; g = q^(1/i) - Khinchin; If[Abs[g] < r, r = Abs[g]; t = Append[t, i]], {i, 1, Length[p]}]; t
%e A059101 The geometric mean of 17 terms (Khinchin + 0.00752006) is not bettered until we calculate the geometric mean of 97 terms (Khinchin - 0.00326655).
%Y A059101 Cf. A001203, A048613.
%K A059101 nonn
%O A059101 1,2
%A A059101 _Hans Havermann_, Feb 13 2001
%E A059101 a(28)-a(36) from _Hans Havermann_, Dec 27 2012