cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059116 The sequence lambda(4,n), where lambda is defined in A055203. Number of ways of placing n identifiable positive intervals with a total of exactly four starting and/or finishing points.

This page as a plain text file.
%I A059116 #21 Mar 09 2024 13:01:06
%S A059116 0,0,6,114,978,6810,43746,271194,1653378,9998970,60229986,362088474,
%T A059116 2174656578,13054316730,78345032226,470127588954,2820937720578,
%U A059116 16926142884090,101558406986466,609355090964634,3656144492925378
%N A059116 The sequence lambda(4,n), where lambda is defined in A055203. Number of ways of placing n identifiable positive intervals with a total of exactly four starting and/or finishing points.
%C A059116 For all n, a(n)=1*6^n-4*3^n+6*1^n-4*0^n+1*0^n [with 0^0=1] where powers are taken of triangular numbers and multiplied by binomial coefficients with alternating signs.
%H A059116 Vincenzo Librandi, <a href="/A059116/b059116.txt">Table of n, a(n) for n = 0..1000</a>
%H A059116 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (10,-27,18).
%F A059116 For n>0, a(n) = 6^n-4*3^n+6.
%F A059116 a(n) = 10*a(n-1)-27*a(n-2)+18*a(n-3) for n>3. G.f.: -6*x^2*(9*x+1) / ((x-1)*(3*x-1)*(6*x-1)). - _Colin Barker_, Sep 14 2014
%e A059116 a(2)=6 since intervals a-a and b-b can be combined as a-a-b-b, a-b-a-b, a-b-b-a, b-a-b-a, b-a-a-b, or b-a-a-b.
%p A059116 A059116:=n->`if`(n<2, 0, 6^n-4*3^n+6): seq(A059116(n), n=0..20); # _Wesley Ivan Hurt_, Sep 14 2014
%o A059116 (Magma) [1*6^n-4*3^n+6*1^n-4*0^n+1*0^n: n in [0..30]]; // _Vincenzo Librandi_, Sep 23 2011
%o A059116 (PARI) concat([0,0], Vec(-6*x^2*(9*x+1)/((x-1)*(3*x-1)*(6*x-1)) + O(x^100))) \\ _Colin Barker_, Sep 14 2014
%Y A059116 Cf. A058809, A059117.
%K A059116 nonn,easy
%O A059116 0,3
%A A059116 _Henry Bottomley_, Jan 05 2001