This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059117 #5 Jul 17 2019 08:35:47 %S A059117 1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,6,1,0,0,0,0,6,24,1,0,0,0,0,0,114, %T A059117 78,1,0,0,0,0,0,180,978,240,1,0,0,0,0,0,90,4320,6810,726,1,0,0,0,0,0, %U A059117 0,8460,63540,43746,2184,1,0,0,0,0,0,0,7560,271170,774000,271194,6558,1 %N A059117 Square array of lambda(k,n), where lambda is defined in A055203. Number of ways of placing n identifiable positive intervals with a total of exactly k starting and/or finishing points. %F A059117 lambda(k, n) = (lambda(k - 2, n - 1) + 2*lambda(k - 2, n - 1) + lambda(k - 2, n - 1))*k*(k - 1)/2 starting with lambda(k, 0) = 1 if k = 0 but = 0 otherwise. lambda(k, n) = sum_{j=0..k} (-1)^(k + j) * C(k, j) * ((j - 1)*j/2)^n. %e A059117 Rows are: 1,0,0,0,0,0,....; 0,0,1,0,0,0,....; 0,0,1,6,6,0,....; 0,0,1,24,114,180,.... etc. %t A059117 A[ n_, k_] := If[n < 1 || k < 1, Boole[n == 0 && k == 0], n! k! Coefficient[ Normal[ Series[ Sum[ Exp[-x z] (x z)^m/m! Exp[y z m (m - 1)/2], {m, 0, n}], {z, 0, n + k}]], x^n y^k z^(n + k)]]; (* _Michael Somos_, Jul 17 2019 *) %Y A059117 Sum of rows gives A055203. Columns include A000007, A057427, A058809, A059116. Final positive number in each row is A000680. %K A059117 nonn,tabl %O A059117 0,18 %A A059117 _Henry Bottomley_, Jan 05 2001