This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059175 #21 Feb 09 2022 09:04:41 %S A059175 0,66,66,462,180,66,31395,714,72,9,5,15,3,36,42,39,2,9,45,462,12,12, %T A059175 90,3703207920,1692600,84,234,27,3043425,74613,6,7930296,264,4290,510, %U A059175 315,315,73302369360,1155,3,8,239872017,6,4386,1989,18,17740866,499954980 %N A059175 For a rational number p/q let f(p/q) = p*q divided by the sum of digits of p and q; a(n) is obtained by iterating f, starting at n/1, until an integer is reached, or if no integer is ever reached then a(n) = 0. %H A059175 Reinhard Zumkeller, <a href="/A059175/b059175.txt">Table of n, a(n) for n = 0..10000</a> %H A059175 P. Schogt, <a href="http://arxiv.org/abs/1211.6583">The Wild Number Problem: math or fiction?</a>, arXiv preprint arXiv:1211.6583 [math.HO], 2012. - From _N. J. A. Sloane_, Jan 03 2013 %F A059175 a(A214866(n)) = 0. - _Reinhard Zumkeller_, Mar 11 2013 %e A059175 3/1 -> 3/4 -> 12/7 -> 84/10=42/5 -> 210/11 -> 2310/5 = 462 so a(3)=462. %e A059175 84/1 -> 84/13 -> 273/4 -> 273/4 -> ... so a(84) = 0. %t A059175 f[Rational[p_, q_]] := p*q/(Total[ IntegerDigits[p]] + Total[ IntegerDigits[q]]); f[n_Integer] := n/(1 + Total[ IntegerDigits[n]]); a[n_] := If[ IntegerQ[ r = NestWhile[f, n, Not[#1 == #2 || #1 != #2 && IntegerQ[#2]]&, 2]], r, 0]; Table[a[n], {n, 0, 50}] (* _Jean-François Alcover_, Apr 03 2013 *) %o A059175 (Haskell) %o A059175 import Data.Ratio ((%), numerator, denominator) %o A059175 a059175 n = f [n % 1] where %o A059175 f xs@(x:_) | denominator y == 1 = numerator y %o A059175 | y `elem` xs = 0 %o A059175 | otherwise = f (y : xs) %o A059175 where y = (numerator x * denominator x) % %o A059175 (a007953 (numerator x) + a007953 (denominator x)) %o A059175 -- _Reinhard Zumkeller_, Mar 11 2013 %o A059175 (PARI) f2(p,q) = p*q/(sumdigits(p)+sumdigits(q)); %o A059175 f1(r) = f2(numerator(r), denominator(r)); %o A059175 loop(list) = {my(v=Vecrev(list)); for (i=2, #v, if (v[i] == v[1], return(1)););} %o A059175 a(n) = {if (n==0, return(0)); my(ok=0, m=f2(n,1), list=List()); while(denominator(m) != 1, m = f1(m); listput(list, m); if (loop(list), return (0));); return(m);} \\ _Michel Marcus_, Feb 09 2022 %Y A059175 Cf. A007953, A058971, A214866. %K A059175 base,easy,nonn,nice %O A059175 0,2 %A A059175 _Floor van Lamoen_, Jan 15 2001 %E A059175 Corrected and extended by _Naohiro Nomoto_, Jul 20 2001